83
Views
0
CrossRef citations to date
0
Altmetric
Articles

Dynamics of quadruple laser beams in collisionless plasmas

&
Pages 1-18 | Received 22 Dec 2016, Accepted 12 Oct 2017, Published online: 08 Dec 2017

References

  • Maiman TH. Stimulated optical radiation in Ruby. Nature. 1960;187:493–494.
  • Deutsch C, Furukawa H, Mima K, et al. Interaction physics of the fast ignitor concept. Phys Rev Lett. 1996;77:2483–2486.
  • Tabak M, Hammer J, Glinsky ME, et al. Ignition and high gain with ultrapowerful lasers. Phys Plasmas. 1994;1:1626–1634.
  • Hora H. New aspects for fusion energy using inertial confinement. Laser Part Beams. 2007;25:37–45.
  • Burnett NH, Enright GD. Population inversion in the recombination of optically-ionized plasmas. IEEE J Quantum Electron. 1990;26:1797–1808.
  • Amendt P, Eder DC, Wilks SC. X-ray lasing by optical-field-induced ionization. Phys Rev Lett. 1991;66:2589–2592.
  • Esarey E, Sprangle P, Krall J, et al. Overview of plasma-based accelerator concepts. IEEE Trans Plasma Sci. 1996;24:252–288.
  • Mangles SPD, Murphy CD, Najmudin Z, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature. 2004;431:535–538.
  • Ting A, Krushelnick K, Burris HR, et al. Backscattered supercontinuum emission from high-intensity laser-plasma interactions. Opt Lett. 1996;21:1096–1098.
  • Askaryan GA. Effect of the gradient of a strong electromagnetic ray on electrons and atoms. J Exp Theor Phys. 1962;15:1088.
  • Cohen BI, Lasinski BF, Langdon AB, et al. Dynamics of ponderomotive self-focusing in plasmas. Phys Fluids B. 1991;3:766–775.
  • Akhiezer AI, Polovin RV. Theory of wave motion of an electron plasma. Sov Phys JETP. 1956;3:696–705.
  • Singh A, Gupta N. Beat wave excitation of electron plasma wave by relativistic cross focusing of Cosh-Gaussian laser beams in plasma. Phys Plasmas. 2015;22:062115.
  • Gupta DN, Suk H. Enhanced thermal self-focusing of a Gaussian laser beam in a collisionless plasma. Phys Plasmas. 2011;18:124501.
  • Gupta N, Singh N, Singh A. Second harmonic generation of q-Gaussian laser beam in preformed collisional plasma channel with nonlinear absorption. Phys Plasmas. 2015;22:113106.
  • Singh N, Gupta N, Singh A. Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption. Opt Commun. 2016;381:180–188.
  • Kumar A. Ponderomotive self-focusing of surface plasma wave. Plasmonics. 2013;8:1135–1139.
  • Singh A, Gupta N. Second harmonic generation of self focused Cosh-Gaussian laser beam in collisionless plasma. Cont Plasma Phys. 2015;55:501–512.
  • Chiao RY, Garmire E, Townes CH. Self-trapping of optical beams. Phys Rev Lett. 1965;13:479–482.
  • Kelley PL. Self-focusing of optical beams. Phys Rev Lett. 1965;15:1005–1008.
  • Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett. 1970;24:592–595.
  • Gustafson TK, Taran JP, Haus HA, et al. Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Phys Rev. 1969;177:306–313.
  • Gouy LG. Sur une propriete nouvelle des ondes lumineuses. C R Acad Sci Paris Ser IV. 1890;110:1251.
  • Boyd RW. Intuitive explanation of the phase anomaly of focused light beams. J Opt Soc Am. 1980;70:877–880.
  • Feng S, Winful HG. Physical origin of the Gouy phase shift. Opt Lett. 2001;26:485–887.
  • Hariharan P, Robinson PA. The Gouy phase shift as a geometrical quantum effect. J Mod Opt. 1996;43:219–221.
  • Yang J, Winful HG. Generalized eikonal treatment of the Gouy phase shift. Opt Lett. 2006;31:104–106.
  • Karlsson M. Optical beams in saturable self-focusing media. Phys Rev A. 1992;46:2726–2734.
  • Manassah JT, Baldeck PL, Alfano RR. Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt Lett. 1988;13:589–591.
  • Karlsson M, Anderson D, Desaix M. Dynamics of self-focusing and self-phase modulation in a parabolic index optical fiber. Opt Lett. 1992;17:22–24.
  • Gupta DN, Hur MS, Suk H. Additional focusing of a high-intensity laser beam in a plasma with a density ramp and a magnetic field. Appl Phys Lett. 2007;91:081505.
  • Wang Y, Zhou Z. Propagation characters of Gaussian laser beams in collisionless plasma: effect of plasma temperature. Phys Plasmas. 2011;18:043101.
  • Monot P, Auguste T, Gibbon P, et al. Experimental demonstration of relativistic self-channeling of a multiterawatt laser pulse in an underdense plasma. Phys Rev Lett. 1995;74:2953–2956.
  • Habibi M, Ghamari F. Improved focusing of a Cosh-Gaussian laser beam in quantum plasma: higher order paraxial theory. IEEE Trans Plasma Sci. 2012;43:2160–2165.
  • Gaur B, Rawat P, Purohit G. Effect of self-focused Cosh Gaussian laser beam on the excitation of electron plasma wave and particle acceleration. Laser Part Beams. 2016;34:621–630.
  • Hussaina S, Sharma S, Singh RK, et al. Numerical simulation to study the transient self focusing of laser beam in plasma. Phys Plasmas. 2015;22:022107.
  • Purohit G, Rawat P, Gauniyal R. Second harmonic generation by self-focusing of intense hollow Gaussian laser beam in collisionless plasma. Phys Plasmas. 2016;23:013103.
  • Lam JF, Lippmann B, Tappert F. Self-trapped laser beams in plasma. Phys Fluids. 1977;20:1176–1179.
  • Lam JF, Lippmann B, Tappert F. Moment theory of self-trapped laser beams with nonlinear saturation. Opt Commun. 1975;15:419–421.
  • Taniuti T, Washimi H. Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma. Phys Rev Lett. 1968;21:209–212.
  • Ablowitz MJ, Segur H. On the evolution of packets of water waves. J Fluid Mech. 1979;92:691–715.
  • Sati P, Sharma A, Tripathi VK. Self focusing of a quadruple Gaussian laser beam in a plasma. Phys Plasmas. 2012;19:092117.
  • Moshkelgosha M. Controlling the Self-focusing of quadruple Gaussian beam in plasma. IEEE Trans Plasma Sci. 2016;44:894–898.
  • Wang Y, Yuan C, Zhou Z, et al. Propagation of Gaussian laser beam in cold plasma of Drude model. Phys Plasmas. 2011;18:113105.
  • Vlasov SN, Petrishchev VA, Talanov VI. Advanced description of wave beams in linear and nonlinear media (The method of moments). Radiophys Quantum Electron. 1971;14:1062–1070.
  • Zakharov VE. Collapse of Langmuir waves. Sov Phys JETP. 1972;35:908–914.
  • Goldman MV, Nicholson DR. Virial theory of direct Langmuir collapse. Phys Rev Lett. 1978;41:406–409.
  • Goldman MV, Rypdal K, Hafizi B. Dimensionality and dissipation in Langmuir collapse. Phys Fluids. 1980;23:945–955.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.