205
Views
27
CrossRef citations to date
0
Altmetric
Articles

Viscoelastic wave propagation analysis of axially motivated double-layered graphene sheets via nonlocal strain gradient theory

&
Pages 157-176 | Received 21 Jul 2017, Accepted 31 May 2018, Published online: 02 Jul 2018

References

  • Ebrahimi F, Salari E. Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos Struct. 2015;128:363–380.
  • Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10(5):425–435.
  • Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):4703–4710.
  • Wang Q, Varadan VK. Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Mater Struct. 2007;16(1):178.
  • Reddy JN, Pang SD. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys. 2008;103(2):023511.
  • Aydogdu M. A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E. 2009;41(9):1651–1655.
  • Wang YZ, Li FM, Kishimoto K. Flexural wave propagation in double-layered nanoplates with small scale effects. J Appl Phys. 2010;108(6):064519.
  • Malekzadeh P, Setoodeh AR, Beni AA. Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos Struct. 2011;93(7):1631–1639.
  • Narendar S, Gopalakrishnan S. Temperature effects on wave propagation in nanoplates. Compos Part B: Eng. 2012;43(3):1275–1281.
  • Narendar S, Gopalakrishnan S. Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects. Int J Mech Sci. 2012;64(1):221–231.
  • Eltaher MA, Alshorbagy AE, Mahmoud FF. Vibration analysis of Euler–Bernoulli nanobeams by using finite element method. Appl Math Model. 2013;37(7):4787–4797.
  • Arani AG, Kolahchi R, Mortazavi SA. Nonlocal piezoelasticity based wave propagation of bonded double-piezoelectric nanobeam-systems. Int J Mech Mater Des. 2014;10(2):179–191.
  • Ebrahimi F, Salari E. Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory. J Mech Sci Technol. 2015;29(9):3797–3803.
  • Ebrahimi F, Shaghaghi GR, Boreiry M. An investigation into the influence of thermal loading and surface effects on mechanical characteristics of nanotubes. Struct Eng Mech. 2016;57(1):179–200.
  • Ghadiri M, Shafiei N. Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst Technol. 2016;22(12):2853–2867.
  • Ebrahimi F, Barati MR. A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams. Arab J Sci Eng. 2016;41(5):1679–1690.
  • Ebrahimi F, Ghasemi F, Salari E. Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica. 2016;51(1):223–249.
  • Ebrahimi F, Barati MR. Effect of three-parameter viscoelastic medium on vibration behavior of temperature-dependent non-homogeneous viscoelastic nanobeams in hygrothermal environment. Mech Adv Mater Struc. 2016;25:361–374.
  • Ebrahimi F, Barati MR. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. Eur Phys J Plus. 2016;131(8):279.
  • Ebrahimi F, Barati MR. A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment. Appl Phys A. 2016;122(9):792.
  • Ebrahimi F, Barati MR, Haghi P. Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams. Eur Phys J Plus. 2016;131(11):383.
  • Ebrahimi F, Barati MR, Dabbagh A. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Appl Phys A. 2016;122(11):949.
  • Ebrahimi F, Dabbagh A, Barati MR. Wave propagation analysis of a size-dependent magneto-electro-elastic heterogeneous nanoplate. Eur Phys J Plus. 2016;131(12):433.
  • Ebrahimi F, Barati MR. Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory. Smart Mater Struct. 2016;25(10):105014.
  • Ebrahimi F, Barati MR. Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory. Acta Mech Solida Sin. 2016;29(5):547–554.
  • Ebrahimi F, Barati MR. Magneto-electro-elastic buckling analysis of nonlocal curved nanobeams. Eur Phys J Plus. 2016;131(9):346.
  • Ebrahimi F, Hosseini SHS. Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J Therm Stresses. 2016;39(5):606–625.
  • Ebrahimy F, Hosseini SHS. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates. Appl Phys A. 2016;122(10):922.
  • Ebrahimi F, Dabbagh A. Wave propagation analysis of smart rotating porous heterogeneous piezo-electric nanobeams. Eur Phys J Plus. 2017;132:1–15.
  • Ebrahimi F, Barati MR. Vibration analysis of viscoelastic inhomogeneous nanobeams incorporating surface and thermal effects. Appl Phys A. 2017;123(1):5.
  • Ebrahimi F, Barati MR. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Compos Struct. 2017;159:433–444.
  • Ebrahimi F, Barati MR. Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J Mech Appl. 2017;33(1):23–33.
  • Ebrahimi F, Barati MR, Dabbagh A. Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects. Wave Random Complex. 2017;28:215–235.
  • Lam DC, Yang F, Chong ACM, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51(8):1477–1508.
  • Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.
  • Li L, Hu Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci. 2015;97:84–94.
  • Farajpour A, Yazdi MH, Rastgoo A, et al. A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 2016;227(7):1849–1867.
  • Ebrahimi F, Barati MR, Haghi P. Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams. J Therm Stresses. 2016;40:535–547.
  • Ebrahimi F, Barati MR, Dabbagh A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci. 2016;107:169–182.
  • Ebrahimi F, Dabbagh A. On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos Struct. 2017;162:281–293.
  • Ebrahimi F, Dabbagh, A. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Mater Res Express. 2017;4(2):025003.
  • Ebrahimi F, Dabbagh A. Wave propagation analysis of embedded nanoplates based on a nonlocal strain gradient-based surface piezoelectricity theory. Eur Phys J Plus. 2017;132(11):449.
  • Ebrahimi F, Barati MR. Size-dependent dynamic modeling of inhomogeneous curved nanobeams embedded in elastic medium based on nonlocal strain gradient theory. P I Mech Eng C-J Mech Eng Sci. 2017;231(23):4457–4469.
  • Ebrahimi F, Barati MR. Longitudinal varying elastic foundation effects on vibration behavior of axially graded nanobeams via nonlocal strain gradient elasticity theory. Mech Adv Mater Struc. 2017;25:953–963.
  • Ebrahimi F, Dabbagh A. Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory. P I Mech Eng C-J Mech Eng Sci. 2018. doi: 10.1177/0954406217748687.
  • Ebrahimi F, Dabbagh A. Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory. J Electromagnet Wave. 2018;32(2):138–169.
  • Ebrahimi F, Barati MR. Vibration analysis of piezoelectrically actuated curved nanosize FG beams via a nonlocal strain-electric field gradient theory. Mech Adv Mater Struc. 2018;25(4):350–359.
  • Arani AG, Jalaei MH. Nonlocal dynamic response of embedded single-layered graphene sheet via analytical approach. J Eng Math. 2016;98(1):129–144.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388.
  • Seol JH, Jo I, Moore AL, et al. Two-dimensional phonon transport in supported graphene. Science. 2010;328(5975):213–216.
  • Liew KM, He XQ, Kitipornchai S. Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater. 2006;54(16):4229–4236.
  • Murmu T, Pradhan SC. Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J Appl Phys. 2009;105(6):064319.
  • Pradhan SC, Phadikar JK. Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys Lett A. 2009;373(11):1062–1069.
  • Pradhan SC, Murmu T. Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory. Physica E. 2010;42(5):1293–1301.
  • Ansari R, Rajabiehfard R, Arash B. Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comp Mater Sci. 2010;49(4):831–838.
  • Farajpour A, Mohammadi M, Shahidi AR, et al. Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model. Physica E. 2011;43(10):1820–1825.
  • Ansari R, Arash B, Rouhi H. Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos Struct. 2011;93(9):2419–2429.
  • Pradhan SC, Kumar A. Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos Struct. 2011;93(2):774–779.
  • Rouhi S, Ansari R. Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Physica E. 2012;44(4):764–772.
  • Natsuki T, Shi JX, Ni QQ. Buckling instability of circular double-layered graphene sheets. J Phys: Condens Mat. 2012;24(13):135004.
  • Mohammadi M, Ghayour M, Farajpour A. Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Compos Part B: Eng. 2013;45(1):32–42.
  • Arani AG, Kolahchi R, Barzoki AAM, et al. Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic graphene sheets using differential quadrature method. P I Mech Eng A-J Mech Eng Sci. 2013;227(4):862–879.
  • Arani AG, Maboudi MJ, Haghighi H, et al. Nonlinear thermo-nonlocal vibration and instability analysis of an embedded single-layered graphene sheet conveying nanoflow using differential quadrature method. P I Mech Eng A-J Mech Eng Sci. 2013;227(9):2104–2117.
  • Murmu T, McCarthy MA, Adhikari S. In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos Struct. 2013;96:57–63.
  • Farajpour A, Solghar AA, Shahidi A. Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Physica E. 2013;47:197–206.
  • Anjomshoa A, Shahidi AR, Hassani B, et al. Finite element buckling analysis of multi-layered graphene sheets on elastic substrate based on nonlocal elasticity theory. Appl Math Model. 2014;38(24):5934–5955.
  • Wang Y, Li FM, Wang YZ. Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory. Physica E. 2015;67:65–76.
  • Hashemi SH, Mehrabani H, Ahmadi-Savadkoohi A. Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium. Compos Part B: Eng. 2015;78:377–383.
  • Arani AG, Haghparast E, Zarei HB. Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field. Physica B: Cond Matter. 2016;495:35–49.
  • Zenkour AM. Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Physica E. 2016;79:87–97.
  • Ebrahimi F, Shafiei N. Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s higher-order shear deformation plate theory. Mech Adv Mater Struc. 2017;24(9):761–772.
  • Ebrahimi F, Barati MR. Damping vibration analysis of graphene sheets on viscoelastic medium incorporating hygro-thermal effects employing nonlocal strain gradient theory. Compos Struct. 2018;185:241–253.
  • Liu H, Yang JL. Elastic wave propagation in a single-layered graphene sheet on two-parameter elastic foundation via nonlocal elasticity. Physica E. 2012;44(7):1236–1240.
  • Xiao W, Li L, Wang M. Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory. Appl Phys A. 2017;123(6):388.
  • Ebrahimi F, Dabbagh A. On wave dispersion characteristics of double-layered graphene sheets in thermal environments. J Electromagnet Wave. 2017: 1–20. doi: 10.1080/09205071.2017.1417918
  • Natarajan S, Chakraborty S, Thangavel M, et al. Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comp Mater Sci. 2012;65:74–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.