126
Views
25
CrossRef citations to date
0
Altmetric
Original Articles

Impact of dust kinematic viscosity on the breathers and rogue waves in a complex plasma having kappa distributed particles

, , , , &
Pages 1708-1728 | Received 18 Mar 2019, Accepted 25 Nov 2019, Published online: 06 Dec 2019

References

  • Wazwaz AM. Partial differential equations and solitary waves theory. Berlin: Springer; 2009.
  • Wazwaz AM. Negative-order KdV equations in (3 + 1)-dimensions by using the KdV recursion operator. Waves Random Complex Medium. 2017;27(4):768–778.
  • Lü X. Soliton behavior for a generalized mixed nonlinear Schrödinger model with N-fold Darboux transformation. Chaos. 2013;23(3):033137.
  • Gao XY. Mathematical view with observational/experimental consideration on certain (2+1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl Math Lett. 2019;91:165–172.
  • Hu CC, Tian B, Wu XY, et al. Mixed lump-kink and rogue wave-kink solutions for a (3 + 1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid mechanics. Eur Phys J Plus. 2018;133:40–48.
  • Du XX, Tian B, Wu XY, et al. Lie group analysis, analytic solutions and conservation laws of the (3 + 1)-dimensional Zakharov-Kuznetsov-Burgers equation in a collisionless magnetized electron-positron-ion plasma. Eur Phys J Plus. 2018;133:378–392.
  • Liu L, Tian B, Yuan YQ, et al. Dark-bright solitons and semirational rogue waves for the coupled Sasa-Satsuma equations. Phys Rev E. 2018;97:052217–052230.
  • Yuan YQ, Tian B, Liu L, et al. Solitons for the (2 + 1)-dimensional Konopelchenko–Dubrovsky equations. J Math Anal Appl. 2018;460(1):476–486.
  • Truong LX, Van YN. On a class of nonlinear heat equations with viscoelastic term. Comput Math Appl. 2016;72(1):216–232.
  • Liu JG. Lump-type solutions and interaction solutions for the (2 + 1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. Eur Phys J Plus. 2019;134:56–62.
  • Chen SS, Tian B, Liu L, et al. Conservation laws, binary Darboux transformations and solitons for a higher-order nonlinear Schrödinger system. Chaos Solitons Fractals. 2019;118:337–346.
  • Gao XY. Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation. Appl Math Lett. 2017;73:143–149.
  • Wang M, Tian B, Sun Y, et al. Mixed lump-stripe, bright rogue wave-stripe, dark rogue wavestripe and dark rogue wave solutions of a generalized Kadomtsev–Petviashvili equation in fluid mechanics. Chinese J Phys. 2019;60:440–449.
  • El-Tantawy SA. Rogue waves in electronegative space plasmas: The link between the family of the KdV equations and the nonlinear Schrödinger equation. Astrophysics and Space Science. 2016;361:164.
  • Sharma SK, Bailung H. Observation of hole Peregrine soliton in a multicomponent plasma with critical density of negative ions. J Geophys Res Space Phys. 2013;118(2):919–924.
  • Jehan N, Salahuddin M, Saleem H, et al. Modulation instability of low-frequency electrostatic ion waves in magnetized electron-positron-ion plasma. Phys Plasmas. 2008;15(9):092301–092310.
  • Lü X, Ma W-X, Yu J, et al. Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schrödinger equation. Commun Nonlinear Sci Numer Simulat. 2016;31(13):40–46.
  • Lü X. Bright-soliton collisions with shape change by intensity redistribution for the coupled Sasa–Satsuma system in the optical fiber communications. Commun Nonlinear Sci Numer Simulat. 2014;19(11):3969–3987.
  • Kuznetsov E, Rubenchik A, Zakharov V. Soliton stability in plasmas and hydrodynamics. Phys Rep. 1986;142(3):103–165.
  • Kourakis I, Shukla PK. Ion-acoustic waves in a two-electron-temperature plasma: oblique modulation and envelope excitations. J Phys A Math Gen. 2003;36(47):11901–11913.
  • Veldes GP, Borhanian J, McKerr M, et al. Electromagnetic rogue waves in beam-plasma interactions. J Opt. 2013;15(6):064003–064013.
  • Li M, Shui J-J, Huang Y-H, et al. Localized-wave interactions for the discrete nonlinear Schrödinger equation under the nonvanishing background. Phys Scr. 2018;93(11):115203.
  • Zhang CR, Tian B, Wu XY, et al. Rogue waves and solitons of the coherently-coupled nonlinear Schrödinger equations with the positive coherent coupling. Phys Scr. 2018;93(9):095202.
  • Peregrine DH. Water waves, nonlinear Schrödinger equations and their solutions. J Aust Math Soc Ser B Appl Math. 1983;25(1):16–43.
  • Akhmediev N, Soto-Crespo JM, Ankiewicz A. Extreme waves that appear from nowhere: on the nature of rogue waves. Phys Lett A. 2009;373(25):2137–2145.
  • Ma YC. The perturbed plane-wave solutions of the cubic Schrödinger equation. Stud Appl Math. 1979;60(1):43–58.
  • Li M, Shui JJ, Xu T. Generation mechanism of rogue waves for the discrete nonlinear Schrödinger equation. Appl Math Lett. 2018;83:110–115.
  • Li M, Shui JJ, Huang YH, et al. Localized-wave interactions for the discrete nonlinear Schrödinger equation under the nonvanishing background. Phys Scr. 2018;93(11):115203.
  • Akhmediev N, Soto-Crespo JM, Ankiewicz A. How to excite a rogue wave. Phys Rev A. 2009;80:043818–043825.
  • Onorato M, Residori S, Bortolozzo U, et al. Rogue waves and their generating mechanisms in different physical contexts. Phys Rep. 2013;528(2):47–90.
  • Chabchoub A, Hoffmann NP, Akhmediev N. Rogue wave observation in a water wave tank. Phys Rev Lett. 2011;106:204502–204506.
  • Kibler B, Fatome J, Finot C, et al. The Peregrine soliton in nonlinear fibre optics. Nature Phys. 2010;6:790–795.
  • Du Z, Tian B, Chai HP, et al. Rogue waves for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in an inhomogeneous optical fiber. Chaos Soliton Fract. 2018;109:90–98.
  • Bailung H, Sharma SK, Nakamura Y. Observation of peregrine solitons in a multicomponent plasma with negative ions. Phys Rev Lett. 2011;107:255005–255009.
  • Moslem WM, Sabry R, El-Labany SK, et al. Dust-acoustic rogue waves in a nonextensive plasma. Phys Rev E. 2011;84:066402–066409.
  • Shukla PK, Mamun AA. Introduction to dusty plasma physics. Bristol: IOP Press; 2002.
  • Ellis TA, Neff JS. Numerical simulation of the emission and motion of neutral and charged dust from P/Halley. Icarus. 1991;91(2):280–296.
  • Nakamura Y. Experiments on ion-acoustic shock waves in a dusty plasma. Phys Plasmas. 2002;9(2):440–445.
  • Rao NN, Shukla PK, Yu MY. Dust-acoustic waves in dusty plasmas. Planet Space Sci. 1990;38(4):543–546.
  • Melandso F. Lattice waves in dust plasma crystals. Phys Plasmas. 1996;3(11):3890–3892.
  • Shukla PK. A survey of dusty plasma physics. Phys Plasmas. 2001;8(5):1791–1803.
  • Massey H. Negative ions. 3rd ed. Cambridge: Cambridge University Press; 1976.
  • Barkan A, D'Angelo N, Merlino R. Laboratory studies of waves and instabilities in dusty plasmas. Phys Plasmas. 1998;5(5):1607–1614.
  • Gottscho RA, Gaebe CE. Negative ion kinetics in RF glow discharges IEEE trans. Plasma Sci. 1986;14(2):92–102.
  • Bascal M, Hamilton GW. H- and D-production in plasmas. Phys Rev Lett. 1979;42(23):1538–1540.
  • El-Tantawy SA, El-Awady EI, Tribeche M. On the rogue waves propagation in non-Maxwellian complex space plasmas. Phys Plasmas. 2015;22(11):113705–113711.
  • El-Labany SK, El-Taibany WF, El-Shamy EF, et al. Nonplanar dust acoustic solitary waves in a strongly coupled dusty plasma with superthermal ions. Phys Plasmas. 2014;21:123710–123720.
  • Vasyliunas VM. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J Geophys Res. 1968;73(9):2839–2884.
  • Mace RL, Hellberg MA. A dispersion function for plasmas containing superthermal particles. Phys Plasmas. 1995;2(6):2098–2109.
  • Hussain S, Mahmood S, Ur-Rehman H. Ion acoustic shock waves in plasmas with warm ions and kappa distributed electrons and positrons. Phys Plasmas. 2013;20(6):062102.
  • Morooka MW, Wahlund JE, Eriksson AI, et al. Dusty plasma in the vicinity of Enceladus. J Gheophys Res. 2011;116(A12):A12221–A12236.
  • Barkan A, Merlino RL, D'Angelo N. Laboratory observation of the dust-acoustic wave mode. Phys Plasmas. 1995;2(10):3563–3565.
  • Shahmansouri M, Tribeche M. Dust acoustic localized structures in an electron depleted dusty plasma with two-suprathermal ion-temperature. Astrophys Space Sci. 2012;342(1):87–92.
  • Shahmansouri M, Alinejad H. Dust acoustic solitary waves in a magnetized electron depleted superthermal dusty plasma. Phys Plasmas. 2013;20(3):033704.
  • Chowdhury NA, Mannan A, Mamun AA. Rogue waves in space dusty plasmas. Phys Plasmas. 2017;24(11):113701.
  • Sethi P, Kaur N, Singh K, et al. Rogue waves in dusty plasma with two temperature superthermal. AIP Conf Proc. 2018;1925:020013–020017.
  • Amador G, Colon K, Luna N, et al. On solutions for linear and nonlinear Schrödinger equations with variable coefficients: a computational approach. Symmetry. 2016;8(6):38.
  • Xu T, Lan S, Li M, et al. Mixed soliton solutions of the defocusing nonlocal nonlinear Schrödinger equation. Phys D. 2019;390:47–61.
  • Wazwaz AM. Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities. Math Comput Model. 2006;43:802–808.
  • Guo S, Mei L. Modulation instability and dissipative rogue waves in ion-beam plasma: roles of ionization, recombination, and electron attachment. Phys Plasmas. 2014;21(11):112303–112311.
  • Amin MR. Modulation of a quantum positron acoustic wave. Astrophys Space Sci. 2015;359(1):2–9.
  • Amin MR. Modulation of a compressional electromagnetic wave in a magnetized electron-positron quantum plasma. Phys Rev E. 2015;92(3):033106–033117.
  • Guo S, Mei L, He Y, et al. Modulation instability and ion-acoustic rogue waves in a strongly coupled collisional plasma with nonthermal nonextensive electrons. Plasma Phys Control Fusion. 2016;58(2):025014–025023.
  • El-Tantawy SA. Ion-acoustic waves in ultracold neutral plasmas: modulational instability and dissipative rogue waves. Phys Lett A. 2017;381(8):787–791.
  • Onorato M, Proment D. Approximate rogue wave solutions of the forced and damped nonlinear Schrödinger equation for water waves. Phys Lett A. 2012;376(45):3057–3059.
  • Mendoza-Briceño CA, Russel SM, Mamun AA. Large amplitude electrostatic solitary structures in a hot non-thermal dusty plasma. Planet Space Sci. 2000;48(6):599–608.
  • Ghai Y, Sain NS. Shock waves in dusty plasma with two temperature superthermal ions. Astrophys Space Sci. 2017;362(3):58–67.
  • Baluku TK, Hellberg MA, Kourakis I, et al. Dust ion acoustic solitons in a plasma with kappa-distributed electrons. Phys Plasmas. 2010;17(5):053702–053713.
  • Xue J-K. Propagation of nonplanar dust-acoustic envelope solitary waves in a two-ion-temperature dusty plasma. Phys Plasmas. 2004;11(5):1860–1865.
  • Xue J-K. Modulation of dust acoustic waves with non-adiabatic dust charge fluctuations. Phys Lett A. 2003;320(2–3):226–233.
  • Guo S, Mei L. Modulation instability and dissipative rogue waves in ion-beam plasma: roles of ionization, recombination, and electron attachment. Phys Plasmas. 2014;21(11):112303–112311.
  • Chin SA, Ashour OA, Nikolić SN, et al. Maximal intensity higher-order Akhmediev breathers of the nonlinear Schrödinger equation and their systematic generation. Phys Lett A. 2016;380(43):3625–3629.
  • Kibler B, Fatome J, Finot C, et al. Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Sci Rep. 2012;2:463.
  • El-Tantawy SA, Wazwaz AM, Shan SA. On the nonlinear dynamics of breathers waves in electronegative plasmas with Maxwellian negative ions. Phys Plasmas. 2017;24(2):022105–022114.
  • Akhmediev N, Ankiewicz A, Soto-Crespo JM. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys Rev E. 2009;80(2):026601–026610.
  • El-Tantawy SA, El-Awady EI. Cylindrical and spherical Akhmediev breather and rogue waves in ultracold neutral plasmas. Phys Plasmas. 2018;25(1):012121–012127.
  • Seki K, Hirahara M, Hoshino M, et al. Cold ions in the hot plasma sheet of Earth's magnetotail. Nature. 2003;422:589–592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.