65
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Thermoelastic response of fiber-reinforced epoxy composite under continuous line heat source

ORCID Icon, ORCID Icon &
Pages 1749-1779 | Received 03 May 2019, Accepted 25 Nov 2019, Published online: 06 Dec 2019

References

  • Mondal S, Sur A, Bhattacharya D, et al. Thermoelastic interaction in a magneto-thermoelastic rod with memory-dependent derivative due to the presence of moving heat source. Ind J Phys. 2019. DOI:https://doi.org/10.1007/s12648-019-01593-6
  • Mondal S, Sur A, Kanoria M. Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo Fabrizio heat transport law. Acta Mech. 2019. DOI:https://doi.org/10.1007/s00707-019-02498-5
  • Sur A, Kanoria M. Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. Euro J Comput Mech. 2014;23:179–198.
  • Das P, Kanoria M. Study of finite thermal wavs in a magneto-thermo-elastic rotating medium. J Therm Stress. 2014;37:405–428.
  • Das P, Kar A, Kanoria M. Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. J Therm Stress. 2013;36:239–258.
  • Sur APal P, Kanoria M. Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. J Therm Stress. 2018;41(8):973–992.
  • Karmakar R, Sur A, Kanoria M. Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. J Appl Mech Tech Phys. 2016;57(4):652–665.
  • Sur A, Kanoria M. Finite thermal wave propagation in a half-space due to variable thermal loading. Appl Appl Math. 2014;9(1):94–120.
  • Sur A, Kanoria M. Thermoelastic interaction in a three dimensional layered sandwich structure. Mech Adv Comp Struct. 2018;5:187–198.
  • Lord H, Shulman Y. A generalized dynamic theory of thermoelasticity. J Mech Phys Solids. 1967;15:299–309.
  • Chakravorty S, Ghosh S, Sur A. Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 2017;173:851–858.
  • Sur A, Kanoria M. Fractional order generalized thermoelastic functionally graded solid with variable material properties. J Solid Mech. 2014;6:54–69.
  • Sur A, Kanoria M. Three dimensional thermoelastic problem under two-temperature theory. Int J Comput Method. 2017;14(3):1750030. DOI:https://doi.org/10.1142/S021987621750030X
  • Rocha IBCM, Van-der Meer, Lahuerta F, et al. A combined experimental/numerical investigation on hygrothermal aging of fiber-reinforced composites. Euro J Mech A/Solids. 2019;73:407–419.
  • You M, Zheng Y, Zheng XL, et al. Effect of metal as part of fillet on the tensile shear strength of adhesively bonded single lap joints. Int J Adhes Adhes. 2003;23:365–369.
  • Khoramishad H, Razavi SMJ. Metallic fiber-reinforced adhesively bonded joints. Int J Adhes Adhes. 2014;55:114–122.
  • Spencer AJM. Continuum theory of the mechanics of fibre-reinforced composites. New York (NY): Springer; 1984.
  • Sur A, Kanoria M. Field equations and corresponding memory responses for a fiber-reinforced functionally graded due to heat source. Mech Based Design Struct Mach. 2019. DOI:https://doi.org/10.1080/15397734.2019.1693897
  • Sur A, Pal P, Mondal S, et al. Finite element analysis in a fibre-reinforced cylinder due to memory-dependent heat transfer. Acta Mech. 2019. DOI:https://doi.org/10.1007/s00707-018-2357-2
  • Sur A, Kanoria M. Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Eng. 2015;127:605–612.
  • Sur A, Kanoria M. Modeling of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Eng. 2017;173:875–882.
  • Sur A, Kanoria M. Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin Walled Struct. 2017. DOI:https://doi.org/10.1016/j.tws.2017.05.005
  • Zhao D, Luo M. Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl Math Comput. 2019;346:531–544.
  • Pareto V. Cours d'économie politique. Vol. 1. Genève: Librairie Droz; 1964.
  • Zipf G. Human behavior and the principle of least effort: an introduction to human ecology. Reading, MA: Addison-Wesley; 1949.
  • Clauset A, Shalizi CR, Newman M. Power-law distributions in empirical data. SIAM Rev. 2009;51(4):661–703.
  • Diethelm K. The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Berlin: Springer-Verlag; 2010.
  • Caputo M. Linear models of dissipation whose Q is almost frequency independent II. Geophys J Roy Astron Soc. 1967;3:529–539.
  • Caputo M, Mainardi F. Linear model of dissipation in anelastic solids. Riv Nuovo cimento. 1971;1:161–198.
  • Sur A, Kanoria M. Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mech. 2012;223:2685–2701.
  • Purkait P, Sur A, Kanoria M. Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer. Int J Adv Appl Math Mech. 2017;5(1):28–39.
  • Yu YJ, Hu W, Tian XG. A novel generalized thermoelasticity model based on memory-dependent derivative. Int J Eng Sci. 2014;81:123–134.
  • Ezzat MA, El-Karamany AS, El-Bary AA. Electro-thermoelasticity theory with memory-dependent derivative heat transfer. Int J Eng Sci. 2016;99:22–38.
  • Ezzat MA, El-Bary AA. Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J Mech Sci Tech. 2015;29:4273–4279.
  • Ezzat MA, El-Karamany AS, El-Bary AA. Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mech Adv Mater Struct. 2016;23:545–553.
  • Ezzat MA, El-Karamany AS, El-Bary AA. Modeling of memory-dependent derivative in generalized thermoelasticity. Euro Phys J Plus. 2016;131:372.
  • Mondal S, Sur A, Kanoria M. Transient response in a piezoelastic due to the influence of magnetic field with memory dependent derivative. Acta Mech. 2019. DOI:https://doi.org/10.1007/s00707-019-02380-4
  • Wang JL, Li HF. Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput Math Appl. 2011;62:1562–1567.
  • Mondal S, Sur A, Kanoria M. Transient heating within skin tissue due to time-dependent thermal therapy in the context of memory dependent heat transport law. Mech Based Design Struct Mach. 2019. DOI:https://doi.org/10.1080/15397734.2019.1686992
  • Sur A, Mondal S, Kanoria M. Influence of moving heat source on skin tissue in the context of two-temperature Caputo-Fabrizio heat transport law. J Multiscale Model. 2019. DOI:https://doi.org/10.1142/S175697372050002X
  • Sur A. Memory response on wave propagation in a thermoelastic plate due to moving band-type thermal loads and magnetic field. Mech Based Design Struct Mach. 2019. DOI:https://doi.org/10.1080/15397734.2019.1672558
  • Sur A, Mondal S, Kanoria M. Influence of moving heat source on skin tissue in the context of two-temperature memory dependent heat transport law. J Therm Stress. 2019. DOI:https://doi.org/10.1080/01495739.2019.1660288
  • Sur A, Santra S, Kanoria M. Memory response on thermal wave propagation in an elastic solid with voids due to influence of magnetic field. Waves Random Media. 2019. DOI:https://doi.org/10.1080/17455030.2019.1654147
  • El-Karamany AS, Ezzat MA. Thermoelastic diffusion with memory-dependent derivative. J Therm Stress. 2016;39:1035–1050.
  • Sherief HH, Helmy AK. A two dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation. Int J Eng Sci. 2002;40:587–604.
  • Othman MIA. Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time. Mult Model Mater Struct. 2005;1:231–250.
  • Othman MIA, Zidan MEM, Hilal MIM. The effect of magnetic field on a rotating thermoelastic medium with voids under thermal loading due to laser pulse with energy dissipation. Can J Phys. 2014;92:1359–1371.
  • Halsted DJ, Brown DE. Zakian's technique for inverting Laplace transforms. Chem Eng J. 1972;3:312–313.
  • Honig G, Hirdes U. A method for the numerical inversion of the Laplace transform. J Comp Appl Math. 1984;10:113–132.
  • Othman MIA. Generalized electro-magneto-thermoelasticity in case of thermal shock plane waves for a finite conducting half-space with two relaxation time. Mech Mech Eng. 2010;14(1):5–30.
  • Nowacki W. Dynamic problem of thermoelasticity. Vol. 399. Leyden: Noordhoff International; 1975.
  • Dhaliwal RS, Singh A. Dynamic coupled thermoelasticity. New Delhi: Hindustan Publishing Corporation; 1980.
  • Mallik SH, Kanoria M. A unified generalized thermoelasticity formulation: application to penny-shaped crack analysis. J Therm Stress. 2009;32(9):943–965.
  • Tiwari R, Mukhopadhyay S. Analysis of wave propagation in the presence of a continuous line heat source under heat transfer with memory dependent derivatives. Math Mech Solids. 2017. DOI:https://doi.org/10.1177/1081286517692020
  • Purkait P, Sur A, Kanoria M. Elasto-thermodiffusive response in a spherical shell subjected to memory-dependent heat transfer. Waves Random Complex Media. 2019. DOI:https://doi.org/10.1080/17455030.2019.1599464
  • Sur A, Paul P, Kanoria M. Modeling of memory-dependent derivative in a functionally graded plate. Waves Random Complex Media. 2019. DOI:https://doi.org/10.1080/17455030.2019.1606962
  • Mondal S, Pal P, Kanoria M. Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative. Acta Mech. 2019;230:179–199.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.