177
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Wave dispersion characteristics of thermally excited graphene oxide powder-reinforced nanocomposite plates

, &
Pages 204-232 | Received 16 Jan 2020, Accepted 05 May 2020, Published online: 24 Jun 2020

References

  • Bafekrpour E, Simon GP, Habsuda J, et al. Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites. Mater Sci Eng A. 2012;545:123–131.
  • Crosby AJ, Lee JY. Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev. 2007;47(2):217–229.
  • Wang Z-X, Shen H-S. Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Comput Mater Sci. 2011;50(8):2319–2330.
  • Shooshtari A, Rafiee M. Vibration characteristics of nanocomposite plates under thermal conditions including nonlinear effects. Int J Appl Res Mech Eng. 2011;1(1):60–69.
  • Zhu P, Lei Z, Liew KM. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos Struct. 2012;94(4):1450–1460.
  • Wattanasakulpong N, Ungbhakorn V. Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Comput Mater Sci. 2013;71:201–208.
  • Yas M, Pourasghar A, Kamarian S, et al. Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube. Mater Des. 2013;49:583–590.
  • Lei Z, Zhang L, Liew K, et al. Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method. Compos Struct. 2014;113:328–338.
  • Zhang L, Song Z, Liew K. Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method. Compos Struct. 2015;128:165–175.
  • Phung-Van P, Abdel-Wahab M, Liew K, et al. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Compos Struct. 2015;123:137–149.
  • Lei Z, Zhang L, Liew K. Parametric analysis of frequency of rotating laminated CNT reinforced functionally graded cylindrical panels. Compos Part B: Eng. 2016;90:251–266.
  • Song Z, Zhang L, Liew K. Dynamic responses of CNT reinforced composite plates subjected to impact loading. Compos Part B: Eng. 2016;99:154–161.
  • Tornabene F, Fantuzzi N, Bacciocchi M, et al. Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos Part B: Eng. 2016;89:187–218.
  • Ansari R, Torabi J, Shojaei MF. Buckling and vibration analysis of embedded functionally graded carbon nanotube-reinforced composite annular sector plates under thermal loading. Compos Part B: Eng. 2017;109:197–213.
  • Shi Z, Yao X, Pang F, et al. A semi-analytical solution for in-plane free vibration analysis of functionally graded carbon nanotube reinforced composite circular arches with elastic restraints. Compos Struct. 2017;182:420–434.
  • Fantuzzi N, Tornabene F, Bacciocchi M, et al. Free vibration analysis of arbitrarily shaped functionally graded carbon Nanotube-reinforced plates. Compos Part B: Eng. 2017;115:384–408.
  • Wang Q, Cui X, Qin B, et al. Vibration analysis of the functionally graded carbon nanotube reinforced composite shallow shells with arbitrary boundary conditions. Compos Struct. 2017;182:364–379.
  • Wang Q, Pang F, Qin B, et al. A unified formulation for free vibration of functionally graded carbon nanotube reinforced composite spherical panels and shells of revolution with general elastic restraints by means of the Rayleigh–ritz method. Polym Compos. 2018;39(S2):E924–EE44.
  • Ebrahimi F, Farazmandnia N. Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams. Steel Compos Struct. 2018;27(2):149–159.
  • Zghal S, Frikha A, Dammak F. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Appl Math Model. 2018;53:132–155.
  • Song Z, He X, Liew K. Dynamic responses of aerothermoelastic functionally graded CNT reinforced composite panels in supersonic airflow subjected to low-velocity impact. Compos Part B: Eng. 2018;149:99–109.
  • Selim B, Yin B, Liew K. Impact analysis of CNT-reinforced composite plates integrated with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos Part B: Eng. 2018;136:10–19.
  • Safaei B, Moradi-Dastjerdi R, Qin Z, et al. Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads. Compos Part B: Eng. 2019;161:44–54.
  • Ansari MI, Kumar A. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mech Based Des Struct Mach. 2019;47(1):67–86.
  • Draoui A, Zidour M, Tounsi A, et al. Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). J Nano Res: Trans Tech Publ. 2019;57:117–135.
  • Qin Z, Pang X, Safaei B, et al. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos Struct. 2019;220:847–860.
  • Ebrahimi F, Seyfi A. Wave propagation response of multi-scale hybrid nanocomposite shell by considering aggregation effect of CNTs. Mech Based Des Struct Mach. 2019:1–22.
  • Ebrahimi F, Seyfi A, Dabbagh A. Wave dispersion characteristics of agglomerated multi-scale hybrid nanocomposite beams. J Strain Anal Eng Design. 2019;54(4):276–289.
  • Qaderi S, Ebrahimi F, Seyfi A. An investigation of the vibration of multi-layer composite beams reinforced by graphene platelets resting on two parameter viscoelastic foundation. SN Appl Sci. 2019;1(5):399.
  • Boukhlif Z, Bouremana M, Bourada F, et al. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation. Steel Compos Struct. 2019;31(5):503–516.
  • Mahmoudi A, Benyoucef S, Tounsi A, et al. A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations. J Sandwich Struct Mater. 2019;21(6):1906–1929.
  • Chaabane LA, Bourada F, Sekkal M, et al. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Struct Eng Mech. 2019;71(2):185–196.
  • Bousahla AA, Bourada F, Mahmoud S, et al. Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory. Comput Concrete. 2020;25(2):155.
  • Qin B, Zhong R, Wang T, et al. A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions. Compos Struct. 2020;232:111549.
  • Safaei B, Moradi-Dastjerdi R, Behdinan K, et al. Critical buckling temperature and force in porous sandwich plates with CNT-reinforced nanocomposite layers. Aerosp Sci Technol. 2019;91:175–185.
  • Chen D, Yang J, Kitipornchai S. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol. 2017;142:235–245.
  • Shen H-S, Xiang Y, Fan Y. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments. Compos Struct. 2017;182:447–456.
  • Shen H-S, Xiang Y, Fan Y, et al. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Compos Part B: Eng. 2018;136:177–186.
  • Feng C, Kitipornchai S, Yang J. Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos Part B: Eng. 2017;110:132–140.
  • Fan Y, Xiang Y, Shen H-S, et al. Nonlinear low-velocity impact response of FG-GRC laminated plates resting on visco-elastic foundations. Compos Part B: Eng. 2018;144:184–194.
  • Fan Y, Xiang Y, Shen H-S, et al. Low-velocity impact response of FG-GRC laminated beams resting on visco-elastic foundations. Int J Mech Sci. 2018;141:117–126.
  • Liu D, Kitipornchai S, Chen W, et al. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Compos Struct. 2018;189:560–569.
  • Kiani Y, Mirzaei M. Enhancement of non-linear thermal stability of temperature dependent laminated beams with graphene reinforcements. Compos Struct. 2018;186:114–122.
  • Guo H, Cao S, Yang T, et al. Vibration of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Int J Mech Sci. 2018;142:610–621.
  • Gholami R, Ansari R. Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates. Eng Struct. 2018;156:197–209.
  • Malekzadeh P, Setoodeh A, Shojaee M. Vibration of FG-GPLs eccentric annular plates embedded in piezoelectric layers using a transformed differential quadrature method. Comput Methods Appl Mech Eng. 2018;340:451–479.
  • Wang M, Xu Y-G, Qiao P, et al. A two-dimensional elasticity model for bending and free vibration analysis of laminated graphene-reinforced composite beams. Compos Struct. 2019;211:364–375.
  • Thai CH, Ferreira A, Tran T, et al. Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos Struct. 2019;220:749–759.
  • Ebrahimi F, Seyfi A, Dabbagh A, et al. Wave dispersion characteristics of porous graphene platelet-reinforced composite shells. Struct Eng Mech. 2019;71(1):99–107.
  • Karami B, Shahsavari D, Janghorban M, et al. Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Int J Mech Sci. 2019;156:94–105.
  • Qin Z, Zhao S, Pang X, et al. A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. Int J Mech Sci. 2020;170:105341.
  • Qin Z, Safaei B, Pang X, et al. Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions. Res Phys. 2019;15:102752.
  • Tounsi A, Al-Dulaijan S, Al-Osta MA, et al. A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation. Steel Compos Struct. 2020;34(4):511.
  • Gonçalves G, Marques PA, Barros-Timmons A, et al. Graphene oxide modified with PMMA via ATRP as a reinforcement filler. J Mater Chem. 2010;20(44):9927–9934.
  • Zhang Z, Li Y, Wu H, et al. Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory. Mech Adv Mater Struct. 2018;27(1):3–11.
  • Ebrahimi F, Dabbagh A, Civalek Ö. Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams. J Vib Control. 2019;1077546319861002.
  • Ebrahimi F, Nouraei M, Dabbagh A. Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Eng Comput. 2019;36:879–895.
  • Ebrahimi F, Nouraei M, Dabbagh A, et al. Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates. Adv Nano Res. 2019;7(5):293–310.
  • Ebrahimi F, Nouraei M, Dabbagh A, et al. Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field. Struct Eng Mech. 2019;71(4):351–361.
  • Janghorban M, Nami MR. Wave propagation in functionally graded nanocomposites reinforced with carbon nanotubes based on second-order shear deformation theory. Mech Adv Mater Struct. 2017;24(6):458–468.
  • Ebrahimi F, Habibi M, Safarpour H. On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput. 2018;35:1375–1389.
  • Karami B, Janghorban M, Tounsi A. On pre-stressed functionally graded anisotropic nanoshell in magnetic field. J Brazilian Soc Mech Sci Eng. 2019;41(11):495.
  • Karami B, Janghorban M, Tounsi A. Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation. Struct Eng Mech. 2019;70(1):55–66.
  • Ebrahimi F, Barati MR, Haghi P. Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams. Eur Phys J Plus. 2016;131(11):383.
  • Semmah A, Heireche H, Bousahla AA, et al. Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT. Adv Nano Res. 2019;7(2):89.
  • Boulefrakh L, Hebali H, Chikh A, et al. The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate. Geomech Eng. 2019;18(2):161–178.
  • Addou FY, Meradjah M, Bousahla AA, et al. Influences of porosity on dynamic response of FG plates resting on Winkler/pasternak/kerr foundation using quasi 3D HSDT. Comput Concrete. 2019;24(4):347–367.
  • Zaoui FZ, Ouinas D, Tounsi A. New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations. Compos Part B: Eng. 2019;159:231–247.
  • Bellal M, Hebali H, Heireche H, et al. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model. Steel Compos Struct. 2020;34(5):643.
  • Kaddari M, Kaci A, Bousahla AA, et al. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis. Comput Concrete. 2020;25(1):37.
  • She G-L, Yuan F-G, Ren Y-R. On wave propagation of porous nanotubes. Int J Eng Sci. 2018;130:62–74.
  • She G-L, Ren Y-R, Yuan F-G, et al. On vibrations of porous nanotubes. Int J Eng Sci. 2018;125:23–35.
  • She G-L, Yuan F-G, Karami B, et al. On nonlinear bending behavior of FG porous curved nanotubes. Int J Eng Sci. 2019;135:58–74.
  • She G-L, Yuan F-G, Ren Y-R, et al. Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Compos Struct. 2018;203:614–623.
  • Van Es M. Polymer-clay nanocomposites [PhD thesis]. Delft; 2001.
  • Liu Y. A refined shear deformation plate theory. Int J Comput Methods Eng Sci Mech. 2011;12(3):141–149.
  • Zarga D, Tounsi A, Bousahla AA, et al. Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory. Steel Compos Struct. 2019;32(3):389–410.
  • Abualnour M, Chikh A, Hebali H, et al. Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory. Comput Concrete. 2019;24(6):489–498.
  • Medani M, Benahmed A, Zidour M, et al. Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel Compos Struct. 2019;32(5):595–610.
  • Sahla M, Saidi H, Draiche K, et al. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates. Steel Compos Struct. 2019;33(5):663.
  • Khiloun M, Bousahla AA, Kaci A, et al. Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT. Eng Comput. 2019;36:807–821.
  • Boussoula A, Boucham B, Bourada M, et al. A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates. Smart Struct Syst. 2020;25(2):197.
  • Shimpi RP. Refined plate theory and its variants. AIAA J. 2002;40(1):137–146.
  • Shimpi R, Patel H. A two variable refined plate theory for orthotropic plate analysis. Int J Solids Struct. 2006;43(22-23):6783–6799.
  • Shimpi R, Patel H. Free vibrations of plate using two variable refined plate theory. J Sound Vib. 2006;296(4-5):979–999.
  • Kim S-E, Thai H-T, Lee J. Buckling analysis of plates using the two variable refined plate theory. Thin-Walled Struct. 2009;47(4):455–462.
  • Thai H-T, Kim S-E. Free vibration of laminated composite plates using two variable refined plate theory. Int J Mech Sci. 2010;52(4):626–633.
  • Belbachir N, Draich K, Bousahla AA, et al. Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings. Steel Compos Struct. 2019;33(1):81–92.
  • Berghouti H, Adda Bedia E, Benkhedda A, et al. Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Adv Nano Res. 2019;7(5):351–364.
  • Tlidji Y, Zidour M, Draiche K, et al. Vibration analysis of different material distributions of functionally graded microbeam. Struct Eng Mech. 2019;69(6):637–649.
  • Draiche K, Bousahla AA, Tounsi A, et al. Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Comput Concrete. 2019;24(4):369–378.
  • Alimirzaei S, Mohammadimehr M, Tounsi A. Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct Eng Mech. 2019;71(5):485–502.
  • Karami B, Janghorban M, Tounsi A. Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput. 2019;35(4):1297–1316.
  • Balubaid M, Tounsi A, Dakhel B, et al. Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory. Comput Concrete. 2019;24(6):579–586.
  • Boutaleb S, Benrahou KH, Bakora A, et al. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Adv Nano Res. 2019;7(3):191.
  • Meksi R, Benyoucef S, Mahmoudi A, et al. An analytical solution for bending, buckling and vibration responses of FGM sandwich plates. J Sand Struct Mater. 2019;21(2):727–757.
  • Rahmani MC, Kaci A, Bousahla AA, et al. Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory. Comput Concrete. 2020;25(3):225.
  • Bourada F, Bousahla AA, Bourada M, et al. Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory. Wind Struct. 2019;28(1):19–30.
  • Bouderba B, Houari MSA, Tounsi A, et al. Thermal stability of functionally graded sandwich plates using a simple shear deformation theory. Struct Eng Mech. 2016;58(3):397–422.
  • El-Haina F, Bakora A, Bousahla AA, et al. A simple analytical approach for thermal buckling of thick functionally graded sandwich plates. Struct Eng Mech. 2017;63(5):585–595.
  • Bousahla AA, Benyoucef S, Tounsi A, et al. On thermal stability of plates with functionally graded coefficient of thermal expansion. Struct Eng Mech. 2016;60(2):313–335.
  • Ebrahimi F, Nouraei M, Dabbagh A. Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mech Based Des Struct Mach. 2019;48(2):217–240.
  • Song M, Kitipornchai S, Yang J. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct. 2017;159:579–588.
  • Garcia-Macias E, Rodriguez-Tembleque L, Saez A. Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos Struct. 2018;186:123–138.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.