156
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Vibration analysis of multi-scale hybrid nanocomposite shells by considering nanofillers’ aggregation

& ORCID Icon
Pages 1060-1078 | Received 11 Feb 2020, Accepted 10 Aug 2020, Published online: 27 Aug 2020

References

  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363(6430):603–605.
  • Ebrahimi F, Dabbagh A. Mechanics of nanocomposites: homogenization and analysis. 1st ed. Boca Raton (FL): CRC Press; 2020.
  • Ke L-L, Yang J, Kitipornchai S. Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Comp Struct. 2010;92(3):676–683.
  • Shen H-S, Xiang Y. Postbuckling of axially compressed nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Comp Part B: Eng. 2014;67:50–61.
  • Heshmati M, Yas MH, Daneshmand F. A comprehensive study on the vibrational behavior of CNT-reinforced composite beams. Comp Struct. 2015;125:434–448.
  • Lei ZX, Zhang LW, Liew KM. Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Comp Struct. 2015;127:245–259.
  • Zhang LW, Liew KM. Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach. Comp Struct. 2015;132:974–983.
  • Lei ZX, Zhang LW, Liew KM. Parametric analysis of frequency of rotating laminated CNT reinforced functionally graded cylindrical panels. Comp Part B: Eng. 2016;90:251–266.
  • Tornabene F, Fantuzzi N, Bacciocchi M, et al. Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Comp Part B: Eng. 2016;89:187–218.
  • Ebrahimi F, Habibi S. Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment. Adv Nano Res. 2017;5(2):69–97.
  • Fantuzzi N, Tornabene F, Bacciocchi M, et al. Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Comp Part B: Eng. 2017;115:384–408.
  • García-Macías E, Rodríguez-Tembleque L, Castro-Triguero R, et al. Eshelby-Mori-Tanaka approach for post-buckling analysis of axially compressed functionally graded CNT/polymer composite cylindrical panels. Comp Part B: Eng. 2017;128:208–224.
  • Zarei H, Fallah M, Bisadi H, et al. Multiple impact response of temperature-dependent carbon nanotube-reinforced composite (CNTRC) plates with general boundary conditions. Comp Part B: Eng. 2017;113:206–217.
  • Ebrahimi F, Farazmandnia N. Thermal buckling analysis of functionally graded carbon nanotube-reinforced composite sandwich beams. Steel Comp Struct. 2018;27(2):149–159.
  • Ebrahimi F, Dabbagh A. Vibration analysis of graphene oxide powder-/carbon fiber-reinforced multi-scale porous nanocomposite beams: a finite-element study. Europ Phys J Plus. 2019 May;134(5):225.
  • Ebrahimi F, Dabbagh A, Civalek Ö. Vibration analysis of magnetically affected graphene oxide-reinforced nanocomposite beams. J Vib Control. 2019 Dec;25(23–24):2837–2849.
  • Ebrahimi F, Nouraei M, Dabbagh A, et al. Thermal buckling analysis of embedded graphene-oxide powder-reinforced nanocomposite plates. Adv Nano Res. 2019;7(5):293–310.
  • Amani MA, Ebrahimi F, Dabbagh A, et al. A machine learning-based model for the estimation of the temperature-dependent moduli of graphene oxide reinforced nanocomposites and its application in a thermally affected buckling analysis. Eng Comput. 2020:1–11.
  • Ebrahimi F, Hafezi P, Dabbagh A. Buckling analysis of embedded graphene oxide powder-reinforced nanocomposite shells. Defence Technology. 2020 Feb.
  • Ebrahimi F, Nouraei M, Dabbagh A. Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mech Based Des Struct Mach. 2020 Mar;48(2):217–240.
  • Ebrahimi F, Nouraei M, Dabbagh A. Thermal vibration analysis of embedded graphene oxide powder-reinforced nanocomposite plates. Eng Comput. 2020 Jul;36(3):879–895.
  • Thakur VK, Thakur MK, Pappu A, editors. Hybrid polymer composite materials: properties and characterisation. 1st ed. Cambridge (MA): Woodhead Publishing; 2017.
  • Mareishi S, Rafiee M, He XQ, et al. Nonlinear free vibration, postbuckling and nonlinear static deflection of piezoelectric fiber-reinforced laminated composite beams. Comp Part B: Eng. 2014;59:123–132.
  • Rafiee M, Liu XF, He XQ, et al. Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J Sound Vib. 2014;333(14):3236–3251.
  • Rafiee M, Nitzsche F, Labrosse M. Rotating nanocomposite thin-walled beams undergoing large deformation. Comp Struct. 2016;150:191–199.
  • He XQ, Rafiee M, Mareishi S, et al. Large amplitude vibration of fractionally damped viscoelastic CNTs/fiber/polymer multiscale composite beams. Comp Struct. 2015;131:1111–1123.
  • Ebrahimi F, Habibi S. Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments. Mech Adv Mater Struct. 2018;25(5):425–438.
  • Ebrahimi F, Dabbagh A. On thermo-mechanical vibration analysis of multi-scale hybrid composite beams. J Vib Control. 2019;25(4):933–945.
  • Dabbagh A, Rastgoo A, Ebrahimi F. Finite element vibration analysis of multi-scale hybrid nanocomposite beams via a refined beam theory. Thin-Walled Struct. 2019;140:304–317.
  • Ebrahimi F, Dabbagh A. Vibration analysis of multi-scale hybrid nanocomposite plates based on a Halpin-Tsai homogenization model. Comp Part B: Eng. 2019 Sep;173:106955.
  • Ebrahimi F, Dabbagh A. An analytical solution for static stability of multi-scale hybrid nanocomposite plates. Eng Comput. 2019 Aug:1–15.
  • Ebrahimi F, Dabbagh A, Rastgoo A. Free vibration analysis of multi-scale hybrid nanocomposite plates with agglomerated nanoparticles. Mech Based Des Struct Mach. 2019:1–24.
  • Ebrahimi F, Dabbagh A, Rastgoo A, et al. Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates. Comp Mater Continua. 2020;63(1):41–64.
  • Dabbagh A, Rastgoo A, Ebrahimi F. Static stability analysis of agglomerated multi-scale hybrid nanocomposites via a refined theory. Eng Comput. 2020 Jan:1–20.
  • Dabbagh A, Rastgoo A, Ebrahimi F. Post-buckling analysis of imperfect multi-scale hybrid nanocomposite beams rested on a nonlinear stiff substrate. Eng Comput. 2020 May:1–14.
  • Dabbagh A, Rastgoo A, Ebrahimi F. Thermal buckling analysis of agglomerated multiscale hybrid nanocomposites via a refined beam theory. Mech Based Des Struct Mach. 2020:1–27.
  • Ebrahimi F, Dabbagh A. Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers. Defence Technology. 2020 Jan.
  • Shi D-L, Feng X-Q, Huang YY, et al. The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J Eng Mater Tech. 2004;126(3):250–257.
  • Wang L, Hu H. Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B. 2005;71(19):195412.
  • Maleki A T, Pourseifi M, Zakeri M. Effect of agglomeration of the nanotubes on the vibration frequency of the multi-scale hybrid nanocomposite conical shells: a GDQ-based study. Waves Random Complex Media. 2020:1–22.
  • Hussain M, Naeem MN, Shahzad A, et al. Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach. AIP Adv. 2017;7(4):045114.
  • Hussain M, Naeem MN, Isvandzibaei MR. Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell. Proc Inst Mech Eng Part C: J Mech Eng Sci. 2018;232(24):4564–4577.
  • Hussain M, Naeem MN, Shahzad A, et al. Vibrations of rotating cylindrical shells with functionally graded material using wave propagation approach. Proc Inst Mech Eng Part C: J Mech Eng Sci. 2018;232(23):4342–4356.
  • Ebrahimi F, Nouraei M, Dabbagh A, et al. Buckling analysis of graphene oxide powder-reinforced nanocomposite beams subjected to non-uniform magnetic field. Struct Eng Mech. 2019;71(4):351–361.
  • Hussain M, Naeem MN. Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes. Appl Math Modeling. 2019 Nov;75:506–520.
  • Hussain M, Naeem MN. Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method. Comp Part B: Eng. 2019 Apr;163:548–561.
  • Ebrahimi F, Dabbagh A. Wave propagation analysis of smart nanostructures. 1st ed. Boca Raton (FL): CRC Press; 2020.
  • Hussain M, Naeem MN, Taj M, et al. Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz’s method. Adv Nano Res. 2020;8(3):215–228.
  • Sharma P, Singh R, Hussain M. On modal analysis of axially functionally graded material beam under hygrothermal effect. Proc Inst Mech Eng Part C: J Mech Eng Sci. 2020;234(5):1085–1101.
  • Loy C, Lam K, Shu C. Analysis of cylindrical shells using generalized differential quadrature. Shock Vib. 1997;4(3):193–198.
  • Ke L-L, Wang YS, Reddy JN. Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Comp Struct. 2014;116:626–636.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.