144
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Influence of intermittent steam injection into saline water: a study of wave motions in saline water for optimizing similar hydrodynamics in direct contact condensation based milk sterilization process

, , , , &
Pages 2940-2959 | Received 25 May 2020, Accepted 28 Dec 2020, Published online: 12 Jan 2021

References

  • Farrall AW. The application of steam for heating and sterilizing dairy equipment. J. Dairy Sci. 1929;12:95–113. doi:10.3168/jds.S0022-0302(29)93563-3.
  • Khan A, Takriff MS, Rosli MI, et al. Flow characteristics within the wall boundary layers of swirling steam flow in a pipe comprising horizontal and inclined sections. Korean J Chem Eng. 2020;37:19–36. doi:10.1007/s11814-019-0404-x.
  • Weimer JC, Faeth GM, Olson DR. Penetration of vapor jets submerged in subcooled liquids. AIChE J. 1973;19:552–558. doi:10.1002/aic.690190321.
  • Chen LD, Faeth GM. Condensation of submerged vapor jets in subcooled liquids. J Heat Transfer. 1982;104:774–780. doi:10.1115/1.3245199.
  • Khan A, Sanaullah K, Takriff MS, et al. Numerical and experimental investigations on the physical characteristics of supersonic steam jet induced hydrodynamic instabilities, Asia-Pacific. J Chem Eng. 2016;11:271–283. doi:10.1002/apj.1963.
  • Khan A, Takriff MS, Rosli MI, et al. Turbulence dissipation & its induced entrainment in subsonic swirling steam injected in cocurrent flowing water. Int J Heat Mass Transf. 2019;145:118716. doi:10.1016/J.IJHEATMASSTRANSFER.2019.118716.
  • Khan A. CFD based hydrodynamic parametric study of inclined injected supersonic steam into subcooled water, in: 2014. doi:10.3850/978-981-09-4587-9_P03.
  • Kerney PJ, Faeth GM, Olson DR. Penetration characteristics of a submerged steam jet. AIChE J. 1972;18:548–553. doi:10.1002/aic.690180314.
  • Chun MH, Kim YS, Park JW. An investigation of direct condensation of steam jet in subcooled water. Int Commun Heat Mass Transf. 1996;23:947–958. doi:10.1016/0735-1933(96)00077-2.
  • Nariai H, Aya I. Fluid and pressure oscillations occuring at direct contact condensation of steam flow with cold water. Nucl Eng Des. 1986;95:35–45. doi:10.1016/0029-5493(86)90034-8.
  • Chan CK, Lee CKB. A regime map for direct contact condensation. Int J Multiph Flow. 1982;8:11–20. doi:10.1016/0301-9322(82)90003-9.
  • Cho S. Experimental study on dynamic pressure pulse in direct contact condensation of steam discharging into subcooled water, Nuclear Thermal Hydraulics Saf. 98, Pusan, Korea; 1998. https://ci.nii.ac.jp/naid/10018418280.
  • Koshta V. Advances in UHT processing in dairy industry. n.d.
  • Farid M. Heat and mass transfer in food processing. In: Handbook of Farm, Dairy Food Machinery Engineering, Elsevier; 2019. p. 439–460.
  • Kelleher P. Thermal processing techniques for improving protein-enriched beverage, 2019. http://hdl.handle.net/10468/7439.
  • Semko T, Palamarchuk V, Sukhenko V. Application of ultra-high-temperature processing of raw milk to improve cheese quality, Potravin. Slovak J Food Sci. 2019;13:840–845. doi:10.5219/1186.
  • Zhang HL, Han SJ. Viscosity and density of water + sodium chloride + potassium chloride solutions at 298.15 K. J Chem Eng Data. 1996;41:516–520. doi:10.1021/je9501402.
  • Park JT, Olivieri A. ITTC-Recommended procedures fresh water and seawater properties; n.d.
  • Kumbár V, Nedomová S. Viscosity and analytical differences between raw milk and UHT milk of Czech cows. Sci Agric Bohem. 2015;46:78–83. doi:10.1515/sab-2015-0020.
  • Barnard BJS, Mahony JJ, Pritchard WG. The excitation of surface waves near a cut-off frequency. Philos Trans R Soc London Ser A, Math Phys Sci. 1977;286:87–123. doi:10.1098/rsta.1977.0111.
  • Khan A, Spiridonov EK, Khabarova DF, et al. Experimental investigation of a submerged air–water bubbly flow jet in a water tank as a model of steel casting. J Appl Mech Tech Phys. 2020;61:573–582. doi:10.1134/S0021894420040112.
  • Iguchi M, Kasai N. Water model study of horizontal molten steel-Ar two-phase jet in a continuous casting mold. Metall Mater Trans B Process Metall Mater Process Sci. 2000;31:453–460. doi:10.1007/s11663-000-0151-7.
  • Watanabe T, Iguchi M. Water model experiments on the effect of an Argon Bubble on the Meniscus near the Immersion nozzle. ISIJ Int. 2009;49:182–188. doi:10.2355/isijinternational.49.182.
  • Song CH, Cho S, Kang HS. Steam jet condensation in a pool: from fundamental understanding to engineering scale analysis. J Heat Transfer. 2012;134. doi:10.1115/1.4005144.
  • Heinze D, Schulenberg T, Behnke L. A physically based, one-dimensional two-fluid model for direct contact condensation of steam jets submerged in subcooled water. J Nucl Eng Radiat Sci. 2015;1. doi:10.1115/1.4029417.
  • Chong D, Yue X, Wang L, et al. Experimental investigation on the condensation patterns and pressure oscillation characteristics of steam submerged jet through a horizontal pipe at low steam mass flux. Int J Heat Mass Transf. 2019;139:648–659. doi:10.1016/j.ijheatmasstransfer.2019.05.043.
  • Youn DH, Ko KB, Lee YY, et al. The direct contact condensation of steam in a pool at low mass flux. J Nucl Sci Technol. 2003;40:881–885. doi:10.1080/18811248.2003.9715431.
  • Liang KS, Griffith P. Experimental and analytical study of direct contact condensation of steam in water. Nucl. Eng. Des. 1994;147:425–435. doi:10.1016/0029-5493(94)90225-9.
  • Simpson ME, Chan CK. Hydrodynamics of a subsonic vapor jet in subcooled liquid. J Heat Transfer. 1982;104:271–278. doi:10.1115/1.3245083.
  • Damasio C, Del Tin G, Fiegna G, et al. Experimental study on the unstable direct contact condensation; (n.d.). https://inis.iaea.org/search/search.aspx?orig_q=RN:18065452.
  • Hughes ED, Duffey RB. Direct contact condensation and momentum transfer in turbulent separated flows. Int J Multiph Flow. 1991;17:599–619. doi:10.1016/0301-9322(91)90027-Z.
  • Henstock WH, Hanratty TJ. Gas absorption by a liquid layer flowing on the wall of a pipe. AIChE J. 1979;25:122–131. doi:10.1002/aic.690250114.
  • Heinze D, Schulenberg T, Behnke L. A physically based, one-dimensional three-fluid model for direct contact condensation of steam jets in flowing water. Int. J. Heat Mass Transf. 2017;106:1041–1050. doi:10.1016/j.ijheatmasstransfer.2016.10.076.
  • Linehan JH, Petrick M, El-Wakil MM. On the interface shear stress in annular flow condensation. J Heat Transfer. 1969;91:450–452. doi:10.1115/1.3580219.
  • Bona JL, Pritchard WG, Scott LR. An evaluation of a model equation for water waves. Philos Trans R Soc London Ser A, Math Phys Sci. 1981;302:457–510. doi:10.1098/rsta.1981.0178.
  • Sano K. On the seiches of Lake Toya. J Meteorol Soc Japan Ser I.; 32(1913):37–37. doi:10.2151/jmsj1882.32.1_37.
  • Benjamin TB, Feir JE. The disintegration of wave trains on deep water part 1. Theory. J Fluid Mech. 1967;27:417–430. doi:10.1017/S002211206700045X.
  • Hammack JL, Henderson DM. Resonant interactions among surface water waves; 1993. www.annualreviews.org.
  • Pritchard WG. Reflection of water waves in a channel with corrugated bed. J Fluid Mech. 1987;185:249–274. doi:10.1017/S0022112087003161.
  • Martha SC, Bora SN. Reflection and transmission coefficients for water wave scattering by a sea-bed with small undulation. ZAMM. 2007;87:314–321. doi:10.1002/zamm.200610317.
  • Miles J. Wave reflection from a gently sloping beach. J Fluid Mech. 1990;214:59–66. doi:10.1017/S0022112090000040.
  • Lippmann TC, Holman RA, Bowen AJ. Generation of edge waves in shallow water. J Geophys Res Ocean. 1997;102:8663–8679. doi:10.1029/96JC03722.
  • Khan A, Sanaullah K, Sobri Takriff M, et al. Void fraction of supersonic steam jet in subcooled water. Flow Meas Instrum. 2016;47:35–44. doi:10.1016/J.FLOWMEASINST.2015.12.002.
  • Khan A, Sanaullah K, Haq NU. Development of a sensor to detect condensation of super-sonic steam. Adv Mater Res. 2013;650:482–487. doi:10.4028/www.scientific.net/AMR.650.482.
  • Nariai H, Aya I. Fluid and pressure oscillations occuring at direct contact condensation of steam flow with cold water. Nucl Eng. Des. 1986;95:35–45. doi:10.1016/0029-5493(86)90034-8.
  • Afrasyab K, Sanaullah K, Takriff MS, et al. Inclined injection of supersonic steam into subcooled water: a CFD Analysis. Adv Mater Res. 2013;845:101–107. doi:10.4028/www.scientific.net/AMR.845.101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.