170
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

Dual-phase-lag thermoelastic damping in nonlocal rectangular nanoplates

, , , & ORCID Icon
Pages 162-181 | Received 24 Jul 2020, Accepted 08 Mar 2021, Published online: 26 Mar 2021

References

  • Fleck NA, Muller GM, Ashby MF, et al. Strain gradient plasticity: theory and experiment. Acta Metall Mater. 1994;42(2):475–487.
  • Ma Q, Clarke DR. Size dependent hardness of silver single crystals. J Mater Res. 1995;10(4):853–863.
  • Stölken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Mater. 1998;46(14):5109–5115.
  • Chong AC, Lam DC. Strain gradient plasticity effect in indentation hardness of polymers. J Mater Res. 1999;14(10):4103–4110.
  • Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10(5):425–435.
  • Yang FACM, Chong ACM, Lam DCC, et al. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731–2743.
  • Lam DC, Yang F, Chong ACM, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51(8):1477–1508.
  • Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.
  • Said SM. Fractional derivative heat transfer for rotating modified couple stress magneto-thermoelastic medium with two temperatures. Waves Random Complex Media. 2020;30:1–18.
  • Mirtalebi SH, Ahmadian MT, Ebrahimi-Mamaghani A. On the dynamics of micro-tubes conveying fluid on various foundations. SN Appl. Sci. 2019;1(6):547.
  • Ghayesh MH, Farokhi H, Farajpour A. Viscoelastically coupled in-plane and transverse dynamics of imperfect microplates. Thin-Walled Struct. 2019;150:106117.
  • Tadi Beni Y, Mehralian F, & Zeighampour H. The modified couple stress functionally graded cylindrical thin shell formulation. Mech Adv Mater Struct. 2016;23(7):791–801.
  • Akbarzadeh Khorshidi M, Shariati M. An investigation of stress wave propagation in a shear deformable nanobeam based on modified couple stress theory. Waves Random Complex Media. 2016;26(2):243–258.
  • Kumar R, Devi S, Abo-Dahab SM. Propagation of Rayleigh waves in modified couple stress generalized thermoelastic with a three-phase-lag model. Waves Random Complex Media. 2019;29:1–13.
  • Borjalilou V, Asghari M. Size-dependent strain gradient-based thermoelastic damping in micro-beams utilizing a generalized thermoelasticity theory. Int J Appl Mech. 2019;11(01):1950007.
  • Zheng F, Lu Y, Ebrahimi-Mamaghani A. Dynamical stability of embedded spinning axially graded micro and nanotubes conveying fluid. Waves Random Complex Media. 2020;30:1–39.
  • Ghayesh MH, Farokhi H, Farajpour A. Pulsatile vibrations of viscoelastic microtubes conveying fluid. Microsyst Technol. 2019;25(9):3609–3623.
  • Abouelregal AE, Marin M. The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry (Basel). 2020;12(8):1276.
  • Yang X, Sahmani S, Safaei B. Postbuckling analysis of hydrostatic pressurized FGM microsized shells including strain gradient and stress-driven nonlocal effects. Eng Comput. 2020;36:1–16.
  • Borjalilou V, Asghari M. Thermoelastic damping in strain gradient microplates according to a generalized theory of thermoelasticity. J Therm Stresses. 2020;43(4):401–420.
  • Ghayesh MH, Amabili M, Farokhi H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci. 2013;63:52–60.
  • Akgöz B, Civalek Ö. Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. J Comput Theor Nanosci. 2011;8(9):1821–1827.
  • Thai CH, Ferreira AJM, Rabczuk T, et al. Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory. Eur J Mech A Solid. 2018;72:521–538.
  • Uzun B, Yaylı MÖ. Finite element model of functionally graded nanobeam for free vibration analysis. Int J Appl Sci Eng. 2019;11(2):387–400.
  • Ebrahimi F, Barati MR. Propagation of waves in nonlocal porous multi-phase nanocrystalline nanobeams under longitudinal magnetic field. Waves Random Complex Media. 2020;30(2):308–327.
  • Civalek Ö, Demir Ç. Bending analysis of microtubules using nonlocal euler–bernoulli beam theory. Appl Math Model. 2011;35(5):2053–2067.
  • Borjalilou V, Taati E, Ahmadian MT. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: exact solutions. SN Appl Sci.. 2019;1(11):1323.
  • Civalek Ö, Uzun B, Yaylı MÖ, et al. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur Phys J Plus. 2020;135(4):381.
  • Uzun B, Civalek Ö. Nonlocal FEM formulation for vibration analysis of nanowires on elastic matrix with different materials. Math Comput Appl. 2019;24(2):38.
  • Uzun B, Yaylı MÖ. Nonlocal vibration analysis of Ti-6Al-4V/ZrO 2 functionally graded nanobeam on elastic matrix. Arab J Geosci. 2020;13(4):1–10.
  • Taati E, Borjalilou V, Fallah F, et al. On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: perturbation technique. Mech Based Des Struct Mach. 2020;48:1–23.
  • Sarparast H, Ebrahimi-Mamaghani A, Safarpour M, et al. Nonlocal study of the vibration and stability response of small-scale axially moving supported beams on viscoelastic-pasternak foundation in a hygro-thermal environment. Math Methods Appl Sci. 2020;43.
  • Uzun B, Civalek Ö. Free vibration analysis silicon nanowires surrounded by elastic matrix by nonlocal finite element method. Adv Nano Res. 2019;7(2):99.
  • Civalek Ö, Demir C. A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Appl Math Comput. 2016;289:335–352.
  • Barretta R, Faghidian SA, Luciano R, et al. Free vibrations of FG elastic timoshenko nano-beams by strain gradient and stress-driven nonlocal models. Compos. B. Eng.. 2018;154:20–32.
  • Uzun B, Yaylı MÖ, Deliktaş B. Free vibration of FG nanobeam using a finite-element method. Micro Nano Lett. 2020;15(1):35–40.
  • Mahinzare M, Mohammadi K, Ghadiri M. A nonlocal strain gradient theory for vibration and flutter instability analysis in rotary SWCNT with conveying viscous fluid. Waves Random Complex Media. 2019;29:1–26.
  • Gholipour A, Ghayesh MH, Hussain S. A continuum viscoelastic model of timoshenko NSGT nanobeams. Eng Comput. 2020;36:1–16.
  • Faghidian SA. Higher–order nonlocal gradient elasticity: a consistent variational theory. Int J Eng Sci. 2020;154:103337.
  • Esfahani S, Khadem SE, Mamaghani AE. Nonlinear vibration analysis of an electrostatic functionally graded nano-resonator with surface effects based on nonlocal strain gradient theory. Int J Mech Sci. 2019;151:508–522.
  • Khaniki HB, Ghayesh MH, Hussain S, et al. Porosity, mass and geometric imperfection sensitivity in coupled vibration characteristics of CNT-strengthened beams with different boundary conditions. Eng Comput. 2020;36:1–27.
  • Al-Furjan MSH, Habibi M, Ebrahimi F, et al. Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories. Waves Random Complex Media. 2020;30:1–27.
  • Ignaczak J, Ostoja-Starzewski M. Thermoelasticity with finite wave speeds. Oxford: Oxford University Press; 2010.
  • Xu M, Li X. The modeling of nanoscale heat conduction by Boltzmann transport equation. Int J Heat Mass Transf. 2012;55(7–8):1905–1910.
  • Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15(5):299–309.
  • Tzou DY. Macro-to microscale heat transfer: the lagging behavior. Chichester, West Sussex: John Wiley & Sons; 2014.
  • Guyer RA, Krumhansl JA. Solution of the linearized phonon boltzmann equation. Phys Rev. 1966;148(2):766.
  • Zener C. Internal friction in solids. I. theory of internal friction in reeds. Phys Rev. 1937;52(3):230.
  • Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems. Phys. Rev. B 2000;61(8):5600.
  • Taati E, Najafabadi MM, Reddy JN. Size-dependent generalized thermoelasticity model for timoshenko micro-beams based on strain gradient and non-Fourier heat conduction theories. Compos Struct. 2014;116:595–611.
  • Kakhki EK, Hosseini SM, Tahani M. An analytical solution for thermoelastic damping in a micro-beam based on generalized theory of thermoelasticity and modified couple stress theory. Appl Math Model. 2016;40(4):3164–3174.
  • Rezazadeh G, Sheikhlou M, Shabani R. Analysis of bias DC voltage effect on thermoelastic damping ratio in short nano-beam resonators based on nonlocal elasticity theory and dual-phase-lagging heat conduction model. Meccanica. 2015;50(12):2963–2976.
  • Zhang H, Kim T, Choi G, et al. Thermoelastic damping in micro-and nanomechanical beam resonators considering size effects. Int J Heat Mass Transf. 2016;103:783–790.
  • Borjalilou V, Asghari M. Small-scale analysis of plates with thermoelastic damping based on the modified couple stress theory and the dual-phase-lag heat conduction model. Acta Mech. 2018;229:1–16.
  • Deng W, Li L, Hu Y, et al. Thermoelastic damping of graphene nanobeams by considering the size effects of nanostructure and heat conduction. J Therm Stresses. 2018;41(9):1182–1200.
  • Rashahmadi S, Meguid SA. Modeling size-dependent thermoelastic energy dissipation of graphene nanoresonators using nonlocal elasticity theory. Acta Mech. 2019;230(3):771–785.
  • Borjalilou V, Asghari M. Size-dependent analysis of thermoelastic damping in electrically actuated microbeams. Mech Adv Mater Struct. 2019;26:1–11.
  • Kumar H, Mukhopadhyay S. Thermoelastic damping analysis for size-dependent microplate resonators utilizing the modified couple stress theory and the three-phase-lag heat conduction model. Int J Heat Mass Transf. 2020;148:118997.
  • Borjalilou V, Asghari M, Taati E. Thermoelastic damping in nonlocal nanobeams considering dual-phase-lagging effect. J Vib Control. 2020;26(11–12):1042–1053.
  • Reddy JN. Theory and analysis of elastic plates and shells. Boca Raton: CRC press; 2006.
  • Li P, Fang Y, Hu R. Thermoelastic damping in rectangular and circular microplate resonators. J Sound Vib. 2012;331(3):721–733.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.