124
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Analytical solutions of photo-thermal interaction in a semiconductor medium upon the new hyperbolic two-temperature theory

ORCID Icon
Pages 1095-1109 | Received 11 Feb 2021, Accepted 03 May 2021, Published online: 19 May 2021

References

  • Todorović D.M.. Photothermal and electronic elastic effects in microelectromechanical structures. Rev Sci Instrum. 2003;74(1):578–581.
  • Todorović D.M.. Plasma, thermal, and elastic waves in semiconductors. Rev Sci Instrum. 2003;74(1):582–585.
  • Song Y, Cretin B, Todorovic DM, et al. Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency. J Phys D Appl Phys. 2008;41(15):155106.
  • McDonald FA, Wetsel Jr GC. Generalized theory of the photoacoustic effect. J Appl Phys. 1978;49(4):2313–2322.
  • Jackson W, Amer NM. Piezoelectric photoacoustic detection: theory and experiment. J Appl Phys. 1980;51(6):3343–3353.
  • Stearns R, Kino G. Effect of electronic strain on photoacoustic generation in silicon. Appl Phys Lett. 1985;47(10):1048–1050.
  • Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15(5):299–309.
  • Hetnarski RB, Ignaczak J. Generalized thermoelasticity. J Therm Stresses. 1999;22(4-5):451–476.
  • Othman MI, Tantawi RS, Eraki EE. Effect of rotation on a semiconducting medium with two-temperatures under LS theory. Arch Thermodyn. 2017;38:101–122.
  • Othman MI, Tantawi RS, Eraki EE. Effect of the gravity on the photothermal waves in a semiconducting medium with an internal heat source and one relaxation time. Waves Random Complex Media. 2017;27(4):711–731.
  • Bayones F, Kilany A, Abouelregal AE, et al. A rotational gravitational stressed and voids effect on an electromagnetic photothermal semiconductor medium under three models of thermoelasticity. Mech Based Des Struct Mach. 2020: 1–27. DOI:10.1080/15397734.2020.1863229.
  • Murphy M, Torstensson P. Thermal relaxation times: an outdated concept in photothermal treatments. Lasers Med Sci. 2014;29(3):973–978.
  • Rosencwaig A, Opsal J, Willenborg DL. Thin-film thickness measurements with thermal waves. Appl Phys Lett. 1983;43(2):166–168.
  • Opsal J, Rosencwaig A. Thermal and plasma wave depth profiling in silicon. Appl Phys Lett. 1985;47(5):498–500.
  • Hobiny AD, Abbas IA. A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity. Mech Time-Depend Mater. 2017;21(1):61–72.
  • Lotfy K. The elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field. Can J Phys. 2016;94(4):400–409.
  • Mondal S, Sur A, Kanoria M. Photo-thermo-elastic wave propagation under the influence of magnetic field in presence of memory responses. Mech Based Des Struct Mach. 2019: 1–22. DOI:10.1080/15397734.2019.1701493.
  • Alzahrani FS, Abbas IA. Photo-thermo-elastic interactions without energy dissipation in a semiconductor half-space. Results Phys. 2019;15:102805.
  • Lotfy K, El-Bary A, Tantawi R. Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory. Europ Phys Jour Plus. 2019;134(6):280.
  • Hobiny A, Abbas I. A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 2019;15:102588.
  • Lotfy K, Hassan W, El-Bary A, et al. Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results Phys. 2020;16:102877.
  • Alshaikh F. Mathematical modeling of photothermal wave propagation in a semiconducting medium due to LS theory with diffusion and rotation effects. Mech Based Des Struct Mach. 2020: 1–16. DOI:10.1080/15397734.2020.1776620.
  • Yadav AK. Reflection of magneto-photothermal plasma waves in a diffusion semiconductor in two-temperature with multi-phase-lag thermoelasticity. Mech Based Des Struct Mach. 2020: 1–22. DOI:10.1080/15397734.2020.1824797.
  • Kilany A, Abo-Dahab S, Abd-Alla A, et al. Photothermal and void effect of a semiconductor rotational medium based on lord–Shulman theory. Mech Based Des Struct Mach. 2020: 1–14. DOI:10.1080/15397734.2020.1780926.
  • Bayones F, Abd-Alla A, Abo-Dahab S, et al. Effect of a magnetic field and initial stress on the P-waves in a photothermal semiconducting medium with an internal heat source. Mech Based Des Struct Mach. 2021: 1–20. DOI:10.1080/15397734.2021.1872384.
  • Abo-Dahab S. P-waves reflection in a semiconducting photothermal diffusion medium with initial stress and magnetic field. Mech Based Des Struct Mach. 2020: 1–21. DOI:10.1080/15397734.2020.1801462.
  • Abbas IA. The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip. Can J Phys. 2015;93(5):585–590.
  • Zenkour AM, Abbas IA. A generalized thermoelasticity problem of an annular cylinder with temperature-dependent density and material properties. Int J Mech Sci. 2014;84:54–60.
  • Abbas IA. Nonlinear transient thermal stress analysis of thick-walled FGM cylinder with temperature-dependent material properties. Meccanica. 2014;49(7):1697–1708.
  • Lotfy K. Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. Silicon. 2019;11(4):1863–1873.
  • Lotfy K, Abo-Dahab SM, Tantawy R, et al. Thermomechanical response model on a reflection photothermal diffusion waves (RPTD) for semiconductor medium. Silicon. 2020;12:199–209. DOI:10.1007/s12633-019-00116-6.
  • Hobiny A, Abbas I. Fractional order GN model on photo-thermal interaction in a semiconductor plane. Silicon. 2020;12:1957–1964. DOI:10.1007/s12633-019-00292-5.
  • Abbas IA, Aly K, Dahshan A. Analytical solutions of plasma and thermoelastic waves photogenerated by a focused laser beam in a semiconductor material. Silicon. 2018;10(6):2609–2616.
  • Othman MI, Abd-Elaziz EM, Hilal MI. State-space approach to a 2-D generalized thermoelastic medium under the effect of inclined load and gravity using a dual-phase-lag model. Mech Based Des Struct Mach. 2020: 1–17. DOI:10.1080/15397734.2020.1717966.
  • Abbas IA. A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole. Mech Based Des Struct Mach. 2015;43(4):501–513.
  • Abbas IA. Analytical solution for a free vibration of a thermoelastic hollow sphere. Mech Based Des Struct Mach. 2015;43(3):265–276.
  • Mondal S, Sur A. Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media. 2020: 1–24. DOI:10.1080/17455030.2019.1705426.
  • Mahdy A, Lotfy K, Hassan W, et al. Analytical solution of magneto-photothermal theory during variable thermal conductivity of a semiconductor material due to pulse heat flux and volumetric heat source. Waves Random Complex Media. 2020: 1–18. DOI:10.1080/17455030.2020.1717673.
  • Khamis AK, Lotfy K, El-Bary A, et al. Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. Waves Random Complex Media. 2020: 1–15. DOI:10.1080/17455030.2020.1757784.
  • Ailawalia P, Marin M. Response of a semiconducting medium under photothermal theory due to moving load velocity. Waves Random Complex Media. 2020: 1–10. DOI:10.1080/17455030.2020.1831709.
  • Lotfy K. Analytical solution of fractional order heat equation under the effects of variable thermal conductivity during photothermal excitation of spherical cavity of semiconductor medium. Waves Random Complex Media. 2019: 1–19. DOI:10.1080/17455030.2019.1580402.
  • Abbas IA, Hobiny A. Photo-thermal-elastic interaction in an unbounded semiconducting medium with spherical cavity due to pulse heat flux. Waves Random Complex Media. 2018;28(4):670–682.
  • Itu C, Öchsner A, Vlase S, et al. Improved rigidity of composite circular plates through radial ribs. Proceedings of the institution of mechanical engineers. Part L: J Mater Des Appl. 2019;233(8):1585–1593.
  • Marin M. Lagrange identity method for microstretch thermoelastic materials. J Math Anal Appl. 2010;363(1):275–286.
  • Song Y, Bai J, Ren Z. Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory. Acta Mech. 2012;223(7):1545–1557.
  • Mandelis A, Nestoros M, Christofides C. Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt Eng. 1997;36(2):459–468.
  • Youssef HM, El-Bary AA. Theory of hyperbolic two-temperature generalized thermoelasticity. Mater Phys Mech. 2018;40:158–171.
  • Zenkour AM, Abouelregal AE. Effect of temperature dependency on constrained orthotropic unbounded body with a cylindrical cavity due to pulse heat flux. J Therm Sci Technol. 2015;10(1):JTST0019–JTST0019.
  • Debnath L, Bhatta D. Integral transforms and their applications. CRC Press; 2014.
  • Das NC, Lahiri A, Giri RR. Eigenvalue approach to generalized thermoelasticity. Indian J Pure Appl Math. 1997;28(12):1573–1594.
  • Abbas IA. Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties. Comput Math Appl. 2014;68(12):2036–2056.
  • Abbas IA. Eigenvalue approach for an unbounded medium with a spherical cavity based upon two-temperature generalized thermoelastic theory. J Mech Sci Technol. 2014;28(10):4193–4198.
  • Abbas IA. The effects of relaxation times and a moving heat source on a two-temperature generalized thermoelastic thin slim strip. Can J Phys. 2015;93(5):585–590.
  • Lahiri A, Das B, Sarkar S. Eigenvalue approach to thermoelastic interactions in an unbounded body with a spherical cavity. In Proceedings of the World Congress on Engineering. 2010.
  • Stehfest H. Algorithm 368: numerical inversion of Laplace transforms [D5]. Commun ACM. 1970;13(1):47–49.
  • Song Y, Todorovic DM, Cretin B, et al. Bending of semiconducting cantilevers under photothermal excitation. Int J Thermophys. 2014;35(2):305–319.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.