194
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Dynamic response of a functionally graded cylindrical tube with power-law varying properties due to SH-waves

, & ORCID Icon
Pages 1859-1877 | Received 26 Oct 2020, Accepted 22 Jun 2021, Published online: 06 Jul 2021

References

  • Praveen GN, Reddy JN. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. Int J Solids Struct. 1998;35(33):4457–4476. doi:10.1016/S0020-7683(97)00253-9.
  • Yang J, Shen HS. Dynamic response of initially stressed functionally graded rectangular thin plates. Compos Struct. 2001;54(4):497–508. doi:10.1016/S0263-8223(01)00122-2.
  • Han X, Liu GR. Effects of SH waves in a functionally graded plate. Mech Res Commun. 2002;29(5):327–338. doi:10.1016/S0093-6413(02)00316-6.
  • Huang XL, Shen HS. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. Int J Solids Struct. 2004;41(9-10):2403–2427. doi:10.1016/j.ijsolstr.2003.11.012.
  • Kuznetsov SV. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence. Waves Random Complex Media. 2020. doi:10.1080/17455030.2019.1683257.
  • Aminipour H, Janghorban M, Li L. Wave dispersion in nonlocal anisotropic macro/nanoplates made of functionally graded materials. Waves Random Complex Media. 2020. doi:10.1080/17455030.2020.1713422.
  • Strozzi M, Pellicano F. Nonlinear vibrations of functionally graded cylindrical shells. Thin-Walled Struct. 2013;67:63–77. doi:10.1016/j.tws.2013.01.009.
  • Qiao S, Shang XC, Pan EN. Characteristics of elastic waves in FGM spherical shells, an analytical solution. Wave Motion. 2016;62:114–128. doi:10.1016/j.wavemoti.2016.01.001.
  • Li HC, Pang FZ, Chen HL, et al. Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Compos B Eng. 2019;164:249–264. doi:10.1016/j.compositesb.2018.11.046.
  • Al-Furjan MSH, Habibi M, Ebrahimi F, et al. Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories. Waves Random Complex Media. 2020. doi:10.1080/17455030.2020.1831099.
  • Sankar BV. An elasticity solution for functionally graded beams. Compos Sci Technol. 2001;61(5):689–696. doi:10.1016/S0266-3538(01)00007-0.
  • Kapuria S, Bhattacharyya M, Kumar AN. Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos Struct. 2008;82(3):390–402. doi:10.1016/j.compstruct.2007.01.019.
  • Trinh LC, Vo TP, Thai HT, et al. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads. Compos B Eng. 2016;100:152–163. doi:10.1016/j.compositesb.2016.06.067.
  • Ebrahimi F, Barati MR. Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams. Waves Random Complex Media. 2018;28(2):326–342. doi:10.1080/17455030.2017.1346331.
  • Norouzzadeh A, Ansari R, Rouhi H. An analytical study on wave propagation in functionally graded nano-beams/tubes based on the integral formulation of nonlocal elasticity. Waves Random Complex Media. 2020;30(3):562–580. doi:10.1080/17455030.2018.1543979.
  • Reddy JN, Chin CD. Thermomechanical analysis of functionally graded cylinders and plates. J Therm Stresses. 1998;21(6):593–626. doi:10.1080/01495739808956165.
  • Han X, Liu GR, Xi ZC, et al. Characteristics of waves in a functionally graded cylinder. Int J Numer Methods Eng. 2002;53(3):653–676. doi:10.1002/nme.305.
  • Shakeri M, Akhlaghi M, Hoseini SM. Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder. Compos Struct. 2006;76(1-2):174–181. doi:10.1016/j.compstruct.2006.06.022.
  • Baron C. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum. Ultrasonics. 2011;51(2):123–130. doi:10.1016/j.ultras.2010.07.001.
  • Cao ZG, Xu YF, Yuan ZH, et al. Nonstationary vibration responses of a three-dimensional tunnel-soil system excited by moving stochastic load. Comput Geotech. 2020;125; doi:10.1016/j.compgeo.2020.103658.
  • Miao Y, Yao EL, Ruan B, et al. Seismic response of shield tunnel subjected to spatially varying earthquake ground motions. Tunn Undergr Space Technol. 2018;77:216–226. doi:10.1016/j.tust.2018.04.006.
  • Miao Y, Yao EL, Ruan B, et al. Improved hilbert spectral representation method and its application to seismic analysis of shield tunnel subjected to spatially correlated ground motions. Soil Dyn Earthq Eng. 2018;111:119–130. doi:10.1016/j.soildyn.2018.04.050.
  • He R, Kaynia AM, Zhang JS, et al. Influence of vertical shear stresses due to pile-soil interaction on lateral dynamic responses for offshore monopoles. Mar Struct. 2019;64:341–359. doi:10.1016/j.marstruc.2018.11.012.
  • Zhao M, Gao ZD, Du XL, et al. Response spectrum method for seismic soil-structure interaction analysis of underground structure. Bull Earthq Eng. 2019;17(9):5339–5363. doi:10.1007/s10518-019-00673-6.
  • Martin PA. Scattering by a cavity in an exponentially graded half-space. J Appl Mech-Trans ASME. 2009;76(3):031009. doi:10.1115/1.3086585.
  • Liu QJ, Zhao MJ, Zhang C. Antiplane scattering of SH waves by a circular cavity in an exponentially graded half space. Int J Eng Sci. 2014;78:61–72. doi:10.1016/j.ijengsci.2014.02.006.
  • Yang ZL, Zhang CQ, Yang Y, et al. Scattering of out-plane wave by a circular cavity near the right-angle interface in the exponentially inhomogeneous media. Wave Motion. 2017;72:354–362. doi:10.1016/j.wavemoti.2017.04.010.
  • Jiang GXX, Yang ZL, Sun C, et al. Analytical study of SH wave scattering by a cylindrical cavity in the two-dimensional and approximately linear inhomogeneous medium. Waves Random Complex Media. 2020. doi:10.1080/17455030.2019.1704308.
  • Liu QJ, Zhao MJ, Liu ZX. Wave function expansion method for the scattering of SH waves by two symmetrical circular cavities in two bonded exponentially graded half spaces. Eng Anal Bound Elem. 2019;106:389–396. doi:10.1016/j.enganabound.2019.05.015.
  • Cui CY, Meng K, Liang ZM, et al. Effect of radial homogeneity on low-strain integrity detection of a pipe pile in a viscoelastic soil layer. Int J Distrib Sens Netw. 2018;14(10). doi:10.1177/1550147718806459.
  • Cui CY, Meng K, Wu YJ, et al. Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation. Geomech Eng. 2018;16(6):609–618. doi:10.12989/gae.2018.16.6.609.
  • Dai DH, El Naggar MH, Zhang N, et al. Vertical vibration of a pile embedded in radially disturbed viscoelastic soil considering the three-dimensional nature of soil. Comput Geotech. 2019;111:172–180. doi:10.1016/j.compgeo.2019.03.013.
  • Xiang HJ, Shi ZF, Zhang TT. Elastic analyses of heterogeneous hollow cylinders. Mech Res Commun. 2006;33(5):681–691. doi:10.1016/j.mechrescom.2006.01.005.
  • Shi ZF, Zhang TT, Xiang HJ. Exact solutions of heterogeneous elastic hollow cylinders. Compos Struct. 2007;79(1):140–147. doi:10.1016/j.compstruct.2005.11.058.
  • Horgan CO, Chan AM. The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. J Elast. 1999;55(1):43–59. doi:10.1023/A:1007625401963.
  • Jabbari M, Sohrabpour S, Eslami MR. General solution for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. J Appl Mech - Trans ASME. 2003;70(1):111–118. doi:10.1115/1.1509484.
  • Eslami MR, Babaei MH, Poultangari R. Thermal and mechanical stresses in a functionally graded thick sphere. Int J Pressure Vessels Pip. 2005;82(7):522–527. doi:10.1016/j.ijpvp.2005.01.002.
  • Tutuncu N. Stresses in thick-walled FGM cylinders with exponentially-varying properties. Eng Struct. 2007;29(9):2032–2035. doi:10.1016/j.engstruct.2006.12.003.
  • Theotokoglou EE, Stampouloglou IH. The radially nonhomogeneous elastic axisymmetric problem. Int J Solids Struct. 2008;45(25-26):6535–6552. doi:10.1016/j.ijsolstr.2008.08.011.
  • Batra RC. Optimal design of functionally graded incompressible linear elastic cylinders and spheres. AIAA J. 2008;46(8):2050–2057. doi:10.2514/1.34937.
  • Batra RC, Bahrami A. Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders. Int J Non-Linear Mech. 2009;44(3):311–323. doi:10.1016/j.ijnonlinmec.2008.12.005.
  • Tutuncu N, Temel B. A novel approach to stress analysis of pressurized FGM cylinders, disks and spheres. Compos Struct. 2009;91(3):385–390. doi:10.1016/j.compstruct.2009.06.009.
  • Nie GJ, Batra RC. Static deformations of functionally graded polar-orthotropic cylinders with elliptical inner and circular outer surfaces. Compos Sci Technol. 2010;70(3):450–457. doi:10.1016/j.compscitech.2009.11.018.
  • Kara HF, Aydogdu M. Dynamic response of a functionally graded tube embedded in an elastic medium due to SH-waves. Compos Struct. 2018;206:22–32. doi:10.1016/j.compstruct.2018.08.032.
  • Pao YH, Mow CC. Diffraction of elastic waves and dynamic stress concentrations. New York: Crane Russak; 1973.
  • Lee VW, Trifunac MD. Response of tunnels to incident SH waves. J Eng Mech Divis. 1979;105(4):643–659.
  • Balendra T, Thambiratnam DP, Koh CG, et al. Dynamic response of twin circular tunnels due to incident SH-waves. Earthq Eng Struct Dyn. 1984;12(2):181–201.
  • Kara HF. A note on response of tunnels to incident SH-waves near hillsides. Soil Dyn Earthq Eng. 2016;90:138–146. doi:10.1016/j.soildyn.2016.08.021.
  • Gao YF, Chen X, Zhang N, et al. Scattering of plane SH waves induced by a semicylindrical canyon with a subsurface circular lined tunnel. Int J Geomech. 2018;18(6):06018012. doi:10.1061/(ASCE)GM.1943-5622.0001137.
  • Chen X, Zhang N, Gao YF, et al. Effects of a V-shaped canyon with a circular underground structure on surface ground motions under SH wave propagation. Soil Dyn Earthq Eng. 2019;127; doi:10.1016/j.soildyn.2019.105830.
  • Zhang N, Chen X, Gao YF, et al. Analytical solution to scattering of SH waves by a circular lined tunnel embedded in a semi-circular alluvial valley in an elastic half-space. Tunn Undergr Sp Tech. 2020;106; doi: 10.1016/j.tust.2020.103615.
  • Zhang N, Gao YF, Pak RYS. Soil and topographic effects on ground motion of a surficially inhomogeneous semi-cylindrical canyon under oblique incident SH waves. Soil Dyn Earthq Eng. 2017;95:17–28. doi:10.1016/j.soildyn.2017.01.037.
  • Zhang N, Zhang Y, Gao YF, et al. An exact solution for SH-wave scattering by a radially multilayered inhomogeneous semicylindrical canyon. Geophys J Int. 2019;217(2):1232–1260. doi:10.1093/gji/ggz083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.