101
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

The nonlocal potential transformation method and solitary wave solutions for higher dimensions in shallow water waves

, ORCID Icon & ORCID Icon
Pages 2199-2213 | Received 17 Feb 2021, Accepted 05 Jul 2021, Published online: 26 Jul 2021

References

  • Rezazadeh H, Korkmaz A, Eslami M, et al. Traveling wave solution of conformable fractional generalized reaction duffing model by generalized projective Riccati equation method. Opt Quantum Electron. 2018;50:1–13.
  • Zayed EME, Amer YA. The first integral method and its application for deriving the exact solutions of a higher-order dispersive cubic-quintic nonlinear schrödinger equation. Comput Math Model. 2016;27:80–94.
  • Ghorbani A, Wazwaz AM. A multiple variational iteration method for nonlinear two-point boundary value problems with nonlinear conditions. Int J Comput Methods. 2020;18:2050028.
  • Narayanamoorthy S, Mathankumar S. Variational iterative method: an appropriate numerical scheme for solving system of linear volterra fuzzy integro-differential equations. Adv Differ Equ. 2018;2018:1–15.
  • Saleh R, Kassem M, Mabrouk SM. Investigation of breaking dynamics for riemann waves in shallow water, chaos. Solitons & Fractals. 2020;132:109571.
  • Saleh R, Kassem M, Mabrouk S. Exact solutions of calgero–bogoyavlenskii–Schiff equation using the singular manifold method after Lie reductions. Math Methods Appl Sci. 2017;40:5851–5862.
  • Rashed AS, Mabrouk SM, Wazwaz AM. Forward scattering for non-linear wave propagation in (3 + 1)-dimensional jimbo-miwa equation using singular manifold and group transformation methods. Waves Random Complex Media. 2020: 1–13.
  • Chun C. New solitary wave solutions to nonlinear evolution equations by the Exp-function method. Comput Math Appl. 2011;61:2107–2110.
  • Darvishi MT, Najafi M, Arbabi S, et al. Exact propagating multi-anti-kink soliton solutions of a (3 + 1)-dimensional B-type kadomtsev–Petviashvili equation. Nonlinear Dyn. 2016;83:1453–1462.
  • Mabrouk SM, Rashed AS. N-Solitons, kink and periodic wave solutions for (3 + 1)-dimensional Hirota bilinear equation using three distinct techniques. Chin J Phys. 2019;60:48–60.
  • Mabrouk SM. Traveling wave solutions of the extended calogero-bogoyavlenskii-Schiff equation. Int J Eng Res Technol. 2019;8:577–580.
  • Siddique S, Hossain MD, Akbar PMA. Exact wave solutions to the (2 + 1)-dimensional klein-gordon equation with special types of nonlinearity. J Mech Continua and Math Sci. 2019;14:1–20.
  • Wazwaz AM, Xu GQ. Kadomtsev–petviashvili hierarchy: two integrable equations with time-dependent coefficients. Nonlinear Dyn. 2020;100:3711–3716.
  • Zuo JM, Zhang YM. The Hirota bilinear method for the coupled Burgers equation and the high-order boussinesq-Burgers equation. Chin Phys B. 2011;20:010205.
  • Wazwaz AM. A sine-cosine method for handling nonlinear wave equations. Math Comput Model. 2004;40:499–508.
  • Bibi S, Mohyud Din ST. Traveling wave solutions of KdVs using sine–cosine method. J Assoc Arab Univ Basic Appl Sci. 2014;15:90–93.
  • Song JF, Hu YH, Ma ZY. Bäcklund transformation and CRE solvability for the negative-order modified KdV equation. Nonlinear Dyn. 2017;90:575–580.
  • Zhao Z, Han B. Lie symmetry analysis, Bäcklund transformations, and exact solutions of a (2 + 1)-dimensional boiti-leon-pempinelli system. J Math Phys. 2017;58:101514.
  • Bluman G, Cheviakov A. Framework for potential systems and nonlocal symmetries: algorithmic approach. J Math Phys. 2005;46:123506.
  • Fokas A. Integrable nonlinear evolution partial differential equations in 4 + 2 and 3 + 1 dimensions. Phys Rev Lett. 2006;96:190201.
  • Wazwaz AM. A variety of multiple-soliton solutions for the integrable (4 + 1)-dimensional Fokas equation. Waves Random Complex Media. 2018;31:1–11.
  • Zhang S, Tian CHI, Qian WY. Bilinearization and new multisoliton solutions for the (4 + 1)-dimensional Fokas equation. Pramana. 2016;86:1259–1267.
  • Al Amr MO, El-Ganaini S. New exact traveling wave solutions of the (4 + 1)-dimensional Fokas equation. Comput Math Appl. 2017;74:1274–1287.
  • He Y, Liew KM. Exact solutions for (4 + 1)-dimensional nonlinear fokas equation using extended F-expansion method and its variant. Math Probl Eng. 2014;2014:972519.
  • Bluman GW, Kumei S. Symmetries and differential equations. New York: Springer Science & Business Media; 2013.
  • Anco SC, Bluman G. Direct construction method for conservation laws of partial differential equations. part I: examples of conservation law classifications. Eur J Appl Math. 2001;13:545–566.
  • Anco SC, Bluman G. Direct construction method for conservation laws of partial differential equations part II: general treatment. Eur J Appl Math. 2002;13:567–585.
  • Abu El Seoud EY, Kassem MM. Potential method applied to Boussinesq equation. Appl Math Comput. 2010;215:3991–3997.
  • Abu El Seoud EY, Kassem M. A new algorithm for the generation of conservative forms and nonlocal solutions for Lin-tsien equation. Int JAppl Math Stat. 2017;56:120–136.
  • Abu El Seoud EY, Kassem MM. Nonlocal symmetries and solutions of the Hunter Saxton equation. Int J Appl Math Stat. 2017;56:150–163.
  • Bluman GW, Cheviakov AF, Anco SC. Applications of symmetry methods to partial differential equations. New York: Springer; 2010.
  • Zhao Z. Conservation laws and nonlocally related systems of the hunter–Saxton equation for liquid crystal. Anal Math Phys. 2019;9:2311–2327.
  • Zheng Zheng Y, Zhen Ya Y. Symmetry groups and exact solutions of new (4 + 1)-dimensional Fokas equation. Commun Theor Phys. 2009;51:876–880.
  • Sadat R, Saleh R, Kassem M, et al. Investigation of Lie symmetry and new solutions for highly dimensional non-elastic and elastic interactions between internal waves. Chaos, Solitons Fractals. 2020;140:110134.
  • Kumar S, Kumar D, Kumar A. Lie symmetry analysis for obtaining the abundant exact solutions, optimal system and dynamics of solitons for a higher-dimensional Fokas equation, chaos. Solitons & Fractals. 2021;142:110507.
  • Jawad A. The sine-cosine function method for the exact solutions of nonlinear partial differential equations. Int J Res Rev Appl Sci. 2012;13:186–191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.