167
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Comparative study of hybrid and nanofluid flows over an exponentially stretched curved surface with modified Fourier law and dust particles

& ORCID Icon
Pages 3053-3073 | Received 19 Oct 2021, Accepted 01 Mar 2022, Published online: 16 Mar 2022

References

  • Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). IL (United States): Argonne National Lab.; 1995.
  • Buongiorno J. (2006). Convective transport in nanofluids.
  • Rafati M, Hamidi AA, Niaser MS. Application of nanofluids in computer cooling systems (heat transfer performance of nanofluids). Appl Therm Eng. 2012;45-46:9–14.
  • Xian HW, Sidik NAC, Najafi GJJOTA. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135(2):981–1008.
  • Sheikhpour M, Arabi M, Kasaeian A, et al. Role of nanofluids in drug delivery and biomedical technology: Methods and applications. Nanotechnol Sci Appl. 2020;13:47–59.
  • Nagarajan PK, Subramani J, Suyambazhahan S, et al. Nanofluids for solar collector applications: a review. Energy Procedia. 2014;61:2416–2434.
  • Motsumi TG, Makinde OD. Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate. Phys Scr. 2012;86(4):045003.
  • Saidur R, Leong KY, Mohammed HA. A review on applications and challenges of nanofluids. Renewable Sustainable Energy Rev. 2011;15(3):1646–1668.
  • Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2:519659.
  • Sandeep N, Ashwinkumar GP. Impact of nanoparticle shape on magnetohydrodynamic stagnation-point flow of carreau nanoliquid: A comparative study. Proc Inst Mech Eng Part E: J Process Mech Eng. 2021;09544089211058427.
  • Sandeep N, Ranjana B, Samrat SP, et al. Impact of nonlinear radiation on magnetohydrodynamic flow of hybrid nanofluid with heat source effect. Proc Inst Mech Eng Part E: J Process Mech Eng. 2022;09544089211070667.
  • Samrat SP, Ashwinkumar GP, Sandeep N. Simultaneous solutions for convective heat transfer in dusty-nano-and dusty-hybrid nanoliquids. Proc Inst Mech Eng Part E: J Process Mech Eng. 2021;09544089211043605.
  • Chalavadi S, Madde P, Naramgari S, et al. Effect of variable heat generation/absorption on magnetohydrodynamic sakiadis flow of casson/carreau hybrid nanoliquid due to a persistently moving needle. Heat Transfer. 2021;50(8):8354–8377.
  • Mabood F, Ashwinkumar GP, Sandeep N. Effect of nonlinear radiation on 3D unsteady MHD stagnancy flow of Fe3O4/graphene–water hybrid nanofluid. Int J Ambient Energy. 2020: 1–11.
  • Mabood F, Ashwinkumar GP, Sandeep N. Simultaneous results for unsteady flow of MHD hybrid nanoliquid above a flat/slendering surface. J Therm Anal Calorim. 2021;146(1):227–239.
  • Tlili I, Nabwey HA, Ashwinkumar GP, et al. 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci Rep. 2020;10(1):1–13.
  • Ashwinkumar GP. Heat and mass transfer analysis in unsteady MHD flow of aluminum alloy/silver-water nanoliquid due to an elongated surface. Heat Transfer. 2021;50(2):1679–1696.
  • Ashwinkumar GP, Samrat SP, Sandeep N. Convective heat transfer in MHD hybrid nanofluid flow over two different geometries. Int Commun Heat Mass Transfer. 2021;127:105563.
  • Samrat SP, Ashwinkumar GP, Sandeep N. Simultaneous solutions for convective heat transfer in dusty-nano-and dusty-hybrid nanoliquids. Proc Inst Mech Eng Part E: J Process Mech Eng. 2021;09544089211043605.
  • Tlili I, Nabwey HA, Samrat SP, et al. 3D MHD nonlinear radiative flow of CuO-MgO/methanol hybrid nanofluid beyond an irregular dimension surface with slip effect. Sci Rep. 2020;10(1):1–14.
  • Alotaibi H, Althubiti S, Eid MR, et al. Numerical treatment of mhd flow of casson nanofluid via convectively heated non-linear extending surface with viscous dissipation and suction/injection effects. Comput Mater Continua. 2020;66(1):229–245.
  • Yu B, Ramzan M, Riasat S, et al. Impact of autocatalytic chemical reaction in an Ostwald-de-Waele nanofluid flow past a rotating disk with heterogeneous catalysis. Sci Rep. 2021;11(1):1–17.
  • Shaheen N, Ramzan M, Alshehri A, et al. Soret–Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media. Sci Rep. 2021;11(1):1–21.
  • Bilal M, Ramzan M, Mehmood Y, et al. An entropy optimization study of non-Darcian magnetohydrodynamic Williamson nanofluid with nonlinear thermal radiation over a stratified sheet. Proc Inst Mech Eng Part E: J Process Mech Eng. 2021;235(6):1883–1889.
  • Liu C, Khan MU, Ramzan M, et al. Nonlinear radiative Maxwell nanofluid flow in a Darcy–Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection. Sci Rep. 2021;11(1):1–21.
  • Bashir S, Ramzan M, Chung JD, et al. Analyzing the impact of induced magnetic flux and Fourier’s and Fick’s theories on the Carreau-Yasuda nanofluid flow. Sci Rep. 2021;11(1):1–18.
  • Ma Y, Mohebbi R, Rashidi MM, et al. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):032001.
  • Zhang Y, Shahmir N, Ramzan M, et al. Upshot of melting heat transfer in a Von Karman rotating flow of gold-silver/engine oil hybrid nanofluid with cattaneo-christov heat flux. Case Stud Therm Eng. 2021;26:101149.
  • Riasat S, Ramzan M, Sun YL, et al. Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics. Case Stud Therm Eng. 2021;26:101039.
  • Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6:147059.
  • Waini I, Ishak A, Pop I. Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chin J Phys. 2020;68:468–482.
  • Waini I, Ishak A, Pop I. Hybrid nanofluid flow past a permeable moving thin needle. Mathematics. 2020;8(4):612.
  • Bilal M, Arshad H, Ramzan M, et al. Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls. Sci Rep. 2021;11(1):1–16.
  • Zhang Y, Shahmir N, Ramzan M, et al. Upshot of melting heat transfer in a Von Karman rotating flow of gold-silver/engine oil hybrid nanofluid with cattaneo-christov heat flux. Case Stud Therm Eng. 2021;26:101149.
  • Bilal M, Arshad H, Ramzan M, et al. Unsteady hybrid-nanofluid flow comprising ferrousoxide and CNTs through porous horizontal channel with dilating/squeezing walls. Sci Rep. 2021;11(1):1–16.
  • Chung JD, Ramzan M, Gul H, et al. Partially ionized hybrid nanofluid flow with thermal stratification. J Mater Res Technol. 2021;11:1457–1468.
  • Gul T, Bilal M, Alghamdi W, et al. Hybrid nanofluid flow within the conical gap between the cone and the surface of a rotating disk. Sci Rep. 2021;11(1):1–19.
  • Abbas N, Nadeem S, Saleem A, et al. Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chin J Phys. 2021;69:109–117.
  • Baron Fourier JBJ. Théorie analytique de la chaleur. Paris: Chez Firmin Didot, père et fils; 1822.
  • Cattaneo C. Sulla conduzione del calore. Atti Sem Mat Fis Univ Modena. 1948;3:83–101.
  • Christov CI. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun. 2009;36(4):481–486.
  • Han S, Zheng L, Li C, et al. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett. 2014;38:87–93.
  • Hayat T, Farooq M, Alsaedi A, et al. Impact of Cattaneo-Christov heat flux in the flow over a stretching sheet with variable thickness. AIP Adv. 2015;5(8):087159.
  • Abbasi FM, Mustafa M, Shehzad SA, et al. Analytical study of Cattaneo–Christov heat flux model for a boundary layer flow of Oldroyd-B fluid. Chinese Phys B. 2016;25(1):014701.
  • Li J, Zheng L, Liu L. MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects. J Mol Liq. 2016;221:19–25.
  • Shehzad SA, Abbasi FM, Hayat T, et al. Cattaneo-Christov heat flux model for third-grade fluid flow towards exponentially stretching sheet. Appl Math Mech. 2016;37(6):761–768.
  • Ramzan M, Bilal M, Chung JD. Effects of MHD homogeneous-heterogeneous reactions on third grade fluid flow with cattaneo-Christov heat flux. J Mol Liq. 2016;223:1284–1290.
  • Sui J, Zheng L, Zhang X. Boundary layer heat and mass transfer with Cattaneo–Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int J Therm Sci. 2016;104:461–468.
  • Acharya N, Das K, Kundu PK. Cattaneo–Christov intensity of magnetised upper-convected Maxwell nanofluid flow over an inclined stretching sheet: a generalised Fourier and Fick’s perspective. Int J Mech Sci. 2017;130:167–173.
  • Nagendramma V, Raju CSK, Mallikarjuna B, et al. 3D casson nanofluid flow over slendering surface in a suspension of gyrotactic microorganisms with Cattaneo-Christov heat flux. Appl Math Mech. 2018;39(5):623–638.
  • Naseem A, Shafiq A, Zhao L, et al. Analytical investigation of third grade nanofluidic flow over a riga plate using Cattaneo-Christov model. Results Phys. 2018;9:961–969.
  • Ullah KS, Ali N, Hayat T, et al. Heat transfer analysis based on Cattaneo-Christov heat flux model and convective boundary conditions for flow over an oscillatory stretching surface. Therm Sci. 2019;23(2 Part A):443–455.
  • Lv YP, Gul H, Ramzan M, et al. Bioconvective Reiner–Rivlin nanofluid flow over a rotating disk with Cattaneo–Christov flow heat flux and entropy generation analysis. Sci Rep. 2021;11(1):1–18.
  • Abid N, Ramzan M, Chung JD, et al. Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo–Christov heat flux. Sci Rep. 2020;10(1):1–14.
  • Li, Y. X., Shah, F., Khan, M. I., Chinram, R., Elmasry, Y., & Sun, T. C. (2021). Dynamics of cattaneo-Christov double diffusion (CCDD) and arrhenius activation law on mixed convective flow towards a stretched Riga device, Chaos, Solitons Fractals 148: 111010.
  • Ramzan M, Gul H, Kadry S, et al. Role of bioconvection in a three dimensional tangent hyperbolic partially ionized magnetized nanofluid flow with cattaneo-Christov heat flux and activation energy. Int Commun Heat Mass Transfer. 2021;120:104994.
  • Nadeem S, Abbas N, Malik MY. Inspection of hybrid based nanofluid flow over a curved surface. Comput Methods Programs Biomed. 2020;189:105193.
  • Ramzan M, Shaheen N, Chung JD, et al. Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder. Sci Rep. 2021;11(1):1–19.
  • Iqbal Z, Akbar NS, Azhar E, et al. Performance of hybrid nanofluid (Cu-CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. Alexandria Eng J. 2018;57(3):1943–1954.
  • Mishra AK, Pattnaik PK, Mishra SR, et al. Dissipative heat energy on Cu and Al2O3 ethylene–glycol-based nanofluid flow over a heated semi-infinite vertical plate. J Therm Anal Calorim. 2021;145(1):129–137.
  • Ahmed N, Saba F, Khan U, et al. Nonlinear thermal radiation and chemical reaction effects on a (Cu− CuO)/NaAlg hybrid nanofluid flow past a stretching curved surface. Processes. 2019;7(12):962.
  • Kumar KA, Sugunamma V, Sandeep N, et al.. Physical aspects on MHD micropolar fluid flow past an exponentially stretching curved surface. Defect Diffus Forum. 2020;401:79–91. DOI:10.4028/www.scientific.net/ddf.401.79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.