144
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Deflected beam pattern through reconfigurable metamaterial structure at 3.5 GHz for 5G applications

, ORCID Icon, ORCID Icon, , , , & show all
Received 28 Jul 2021, Accepted 10 Mar 2022, Published online: 29 Mar 2022

References

  • Al-Samman AM, Rahman TA, Azmi MH, et al. Millimeter-wave propagation measurements and models at 28 GHz and 38 GHz in a dining room for 5G wireless networks. Measurement (Mahwah N J). 2018;130:71–81.
  • Kimionis J, Georgiadis A, Daskalakis SN, et al. A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. Nat Electron. 2021;4:439–446.
  • Jiang H, Si LM, Hu W, et al. A symmetrical dual-beam Bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications. IEEE Photon J. 2019;11(1):1–9.
  • Esmail BA, Majid HB, Dahlan SH, et al. Planar antenna beam deflection using low-loss metamaterial for future 5G applications. Int J RF Microw Comput Aided Eng. 2019;29(10):1–11.
  • Karabey OH, Mehmood A, Ayluctarhan M, et al. Liquid crystal based phased array antenna with improved beam scanning capability. Electron Lett. 2014;50(6):426–428.
  • Chu H, Guo Y, Member S, et al. 60-GHz LTCC wideband vertical off-center dipole antenna and arrays. IEEE Trans Antennas Propag. 2013;61(1):153–161.
  • Khan MS, Iftikhar A, Capobianco AD, et al. Pattern and frequency reconfiguration of patch antenna using pin diodes. Microw Opt Technol Lett. 2017;59(9):2180–2185.
  • Xiao S, Zheng C, Li M, et al. Varactor-loaded pattern reconfigurable array for wide-angle scanning with low gain fluctuation. IEEE Trans Antennas Propag. 2015;63(5):2364–2369.
  • Da Costa IF, Cerqueira A, Spadoti DH, et al. Optically controlled reconfigurable antenna array for mm-wave applications. IEEE Antennas Wirel Propag Lett. 2017;16:2142–2145.
  • Zhang Y, Lin S, Yu S, et al. Design and analysis of optically controlled pattern reconfigurable planar Yagi–Uda antenna. IET Microw Antennas Propag. 2018;12(13):2053–2059.
  • Martin A, Le Neillon V, Jouade A, et al. Mechanically reconfigurable radiation pattern slot antenna array feeded by bended sectoral horn and metalized wood splitter. Prog Electromagn Res. 2017; 72:159-165.
  • Mirkamali A, Deban R, Siaka F, et al. Fast and low-cost beam steering using an agile mechanical feed system for exciting circular arrays. IET Microw Antennas Propag. 2016;10(4):378–384.
  • Reis JR, Caldeirinha RF, Hammoudeh A, et al. Electronically reconfigurable FSS-inspired transmitarray for 2-D beamsteering. IEEE Trans Antennas Propag. 2017;65(9):4880–4885.
  • Han L, Cheng G, Han G, et al. Electronically beam-steering antenna with active frequency-selective surface. IEEE Antennas Wirel Propag Lett. 2019;18(1):108–112.
  • Zhou GN, Sun BH, Liang QY, et al. Beam-deflection short backfire antenna using phase-modulated metasurface. IEEE Trans Antennas Propag. 2020;68(1):546–551.
  • Swain R, Naik DK, Panda AK. Low-loss ultra-wideband beam switching metasurface antenna in X-band. IET Microw Antennas Propag. 2020;14(11):1216–1221.
  • Cao YF, Zhang XY. A wideband beam-steerable slot antenna using artificial magnetic conductors with simple structure. IEEE Trans Antennas Propag. 2018;66(4):1685–1694.
  • Vilenskiy AR, Litun VI, Lyulyukin KV. Wideband beam steering antenna array of printed cavity-backed elements with integrated EBG structure. IEEE Antennas Wirel Propag Lett. 2019;18(2):245–249.
  • Abdulhameed MK, Zakaria Z, Ibrahim IM, et al. Radiation control of microstrip patch antenna by using electromagnetic band gap. AEU – Int J Electron Commun. 2019;110:1–11.
  • Dadgarpour A, Zarghooni B, Virdee BS, et al. Enhancement of tilted beam in elevation plane for planar end-fire antennas using artificial dielectric medium. IEEE Trans Antennas Propag. 2015;63(10):4540–4545.
  • Patel SK, Shah KH, Kosta YP. Frequency-reconfigurable and high-gain metamaterial microstrip-radiating structure. Waves Random Complex Media. 2019;29(3):523–539.
  • Esmail BA, Majid HB, Zainal Abidin Z, et al. New metamaterial structure with reconfigurable refractive index at 5G candidate band. J Optoelectron Adv M. 2019;21(1-2):101–107.
  • Al-Bawri SS, Islam MS, Wong HY, et al. Metamaterial Cell-Based Superstrate towards Bandwidth and Gain Enhancement of Quad-Band CPW-Fed Antenna for Wireless Applications. IEEE Sens J. 2020;20(2):C1–C1.
  • Mishra N, Chaudhary RK. A miniaturised directive high gain metamaterial antenna using ELC ground for WiMAX application. Int J Electron Lett. 2019;7(1):68–76.
  • Roy S, Chakraborty U. Metamaterial-embedded dual wideband microstrip antenna for 2.4 GHz WLAN and 8.2 GHz ITU band applications. Waves Random Complex Media. 2020;30(2):193–207.
  • Turpin JP, Bossard JA, Morgan KL, et al. Reconfigurable and tunable metamaterials: a review of the theory and applications. Int J Antennas Propag. 2014;2014:1–18.
  • Keerthi RS, Dhabliya D, Elangovan P, et al. Tunable high-gain and multiband microstrip antenna based on liquid/copper split-ring resonator superstrates for C/X band communication. Physica B. 2021;618:413203–413209.
  • Lavadiya SP, Patel SK, Maria R. High gain and frequency reconfigurable copper and liquid metamaterial tooth based microstrip patch antenna. AEU – Int J Electron Commun. 2021;137:1–19.
  • Patel SK, Shah KH, Sonagara JS. Broadband liquid metamaterial radome design. Waves Random Complex Media. 2020;30(2):328–339.
  • Al-Yasir YI, Abdullah AS, Ojaroudi Parchin N, et al. A new polarization-reconfigurable antenna for 5G applications. Electronics (Basel). 2018;7(11):1–9.
  • Xu HX, Sun S, Tang S, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces. Sci Rep. 2016;6(1):1–10.
  • Xu HX, Tang S, Ma S, et al. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci Rep. 2016;6(1):1–10.
  • Xu HX, Ma S, Luo W, et al. Aberration-free and functionality-switchable meta-lenses based on tunable metasurfaces. Appl Phys Lett. 2016;109(19):1–5.
  • Zarghooni B, Dadgarpour A, Denidni TA, et al. Millimeter-wave antenna using two-sectioned metamaterial medium. IEEE Antennas Wirel Propag Lett. 2016;15:960–963.
  • Dadgarpour A, Zarghooni B, Virdee BS, et al. Beam tilting antenna using integrated metamaterial loading. IEEE Trans Antennas Propag. 2014;62(5):2874–2879.
  • Dadgarpour A, Zarghooni B, Virdee BS, et al. Enhancement of tilted beam in elevation plane for planar end-fire antennas using artificial dielectric medium. IEEE Trans Antennas Propag. 2015;63(10):4540–4545.
  • Barati H, Fakheri MH, Abdolali A. Experimental demonstration of metamaterial-assisted antenna beam deflection through folded transformation optics. J Opt. 2018;20(8):1–16.
  • Yi J, de Lustrac A, Burokur SN, et al. Metamaterial lens for beam steering. 10th European conference on Antennas and Propagation (EuCAP); 2016; Davos, Switzerland. p. 1–4.
  • Le MT, Nguyen QC, Vuong TP. Design of high-gain and beam steering antennas using a new planar folded-line metamaterial structure. Int J Antennas Propag. 2014;2014:1–16.
  • Dadgarpour A, Zarghooni B, Virdee BS, et al. Improvement of gain and elevation tilt angle using metamaterial loading for millimeter-wave applications. IEEE Antennas Wirel Propag Lett. 2016;15:418–420.
  • Liu Y, Liu C, Jin X, et al. Beam steering by using a gradient refractive index metamaterial planar lens and a gradient phase metasurface planar lens. Microw Opt Technol Lett. 2018;60(2):330–337.
  • Esmail BA, Majid HB, Zainal Abidin Z, et al. Reconfigurable radiation pattern of planar antenna using metamaterial for 5G applications. Materials (Basel). 2020;13(3):1–15.
  • Esmail BA, Majid HB, Dahlan SH, et al. Reconfigurable metamaterial structure for 5G beam tilting antenna applications. Waves Random Complex Media. 2020;31(6):2089–2102.
  • Chen X, Grzegorczyk TM, Wu BI, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E. 2004;70(1):1–7.
  • Xu HX, Wang C, Wang Y, et al. Spin-encoded wavelength-space multitasking Janus metasurfaces. Adv Opt Mater. 2021;9(11):1–8.
  • Lavadiya SP, Patel SK, Maria R. High gain and frequency reconfigurable copper and liquid metamaterial tooth based microstrip patch antenna. AEU Int J Electron Commun. 2021;137:153799–153719.
  • Lin Y, Tsai S. Analysis and design of broadside-coupled striplines-fed bow-tie antennas. IEEE Trans Antennas Propag. 1998;46(3):459–460.
  • Durgun AC, Member S, Balanis CA, et al. Design, simulation, fabrication and testing of flexible bow-tie antennas. IEEE Trans Antennas Propag. 2011;59(12):4425–4435.
  • Eom S, Seo Y, Lim S. Pattern switchable antenna system using inkjet-printed directional bow-tie for bi-direction sensing applications. Sensors. 2015;15(12):31171–31179.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.