108
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A numerical investigation for tangent hyperbolic hybrid nanofluid transportation across Riga wedge

, ORCID Icon, ORCID Icon, &
Received 06 Mar 2022, Accepted 01 Aug 2022, Published online: 18 Aug 2022

References

  • Ali B, Naqvi RA, Mariam A, et al. Finite element study for magnetohydrodynamic (MHD) tangent hyperbolic nanofluid flow over a faster/slower stretching wedge with activation energy. Mathematics. 2021;9(1):25.
  • Khan W, Badruddin IA, Ghaffari A, et al. Heat transfer in steady slip flow of tangent hyperbolic fluid over the lubricated surface of a stretchable rotatory disk. Case Stud Therm Eng. 2021;24:1–24. Article Id 100825.
  • Usman M, Zubair T, Hamid M, et al. Unsteady flow and heat transfer of tangent-hyperbolic fluid: legendre wavelet-based analysis. Heat Transf. 2021;50(4):3079–3093.
  • Faisal M, Ahmad I, Javed T. Dynamics of MHD tangent hyperbolic nanofluid with prescribed thermal conditions random motion and thermo-migration of nanoparticles. J Dispers Sci Technol. 2021;1–15. https://doi.org/10.1080/01932691.2021.1931291
  • Zhao T, Khan M, Chu Y, et al. Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid. Appl Math Mech. 2021;42:1205–1218.
  • Jamshed W, Nisar KS, M. Isa SSP, et al. Computational case study on tangent hyperbolic hybrid nanofluid flow: single phase thermal investigation. Case Stud Therm Eng. 2021;27:1–27. ARTICLE Id 101246.
  • Sabu AS, Areekara S, Mathew A. Effects of multislip and distinct heat source on MHD Carreau nanofluid flow past an elongating cylinder using the statistical method. Heat Transf. 2021;50(6):5652–5673.
  • Rizwana R, Hussain A, Nadeem S. Mix convection non-boundary layer flow of unsteady MHD oblique stagnation point flow of nanofluid. Int Commun Heat Mass Transf. 2021;124. Article Id 105285. https://doi.org/10.1016/j.icheatmasstransfer.2021.105285
  • Mat Noor NA, Shafie S, Admon MA. Heat and mass transfer on MHD squeezing flow of Jeffrey nanofluid in horizontal channel through permeable medium. PLoS ONE. 2021;16(5):Article Id e0250402.
  • Patil AB, Humane PP, Patil VS, et al. MHD Prandtl nanofluid flow due to convectively heated stretching sheet below the control of chemical reaction with thermal radiation. Int J Ambient Energy. 2021;1–13. https://doi.org/10.1080/01430750.2021.1888803
  • Muntazir R, Mushtaq M, Jabeen K. A numerical study of MHD Carreau nanofluid flow with gyrotactic microorganisms over a plate wedge, and stagnation point. Math Probl Eng. 2021;2021:1–22. https://doi.org/10.1155/2021/5520780
  • Mariam A, Siddique I, Abdal S, et al. Bioconvection attribution for effective thermal transportation of upper convicted Maxwell nanofluid flow due to an extending cylindrical surface. Case Stud Therm Eng. 2022;34:1–11. Article Id 102062.
  • Habib D, Salamat N, Perveen Z, et al. A study on variable viscosity and activation energy for unsteady MHD bioconvection of nano fluid over a sheet with stretch and electric field. Comb Chem High Throughput Screen. 2022. Article Id: 35430988. https://doi.org/10.2174/1386207325666220414114228
  • Abdal S, Siddique I, Ahmadian A, et al. Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux. Mech Time-Depend Mater. 2022;1–16. https://doi.org/10.1007/s11043-022-09551-2
  • Habib D, Salamat N, Abdal S, et al. On time dependent MHD nanofluid dynamics due to enlarging sheet with bioconvection and two thermal boundary conditions. Microfluid Nanofluidics. 2022;26(2):1–15.
  • Abdal S, Siddique I, Afzal S, et al. An analysis for variable physical properties involved in the nano-biofilm transportation of Sutterby fluid across shrinking/stretching surface. Nanomaterials. 2022;12(4):599.
  • Yahya AU, Salamat N, Habib D, et al. Implication of bio-convection and Cattaneo-Christov heat flux on Williamson Sutterby nanofluid transportation caused by a stretching surface with convective boundary. Chin J Phys. 2021;73:706–718.
  • Abdal S, Siddique I, Alrowaili D, et al. Exploring the magnetohydrodynamic stretched flow of Williamson Maxwell nanofluid through porous matrix over a permeated sheet with bioconvection and activation energy. Sci Rep. 2022;12(1):1–12.
  • Ali B, Siddique I, Shafiq A, et al. Magnetohydrodynamic mass and heat transport over a stretching sheet in a rotating nanofluid with binary chemical reaction non-Fourier heat flux, and swimming microorganisms. Case Stud Therm Eng. 2021;28:1–11. Article Id 101367.
  • Abdal S, Habib U, Siddique I, et al. Attribution of multi-slips and bioconvection for micropolar nanofluids transpiration through porous medium over an extending sheet with pst and PHF conditions. Int J Appl Comput Math. 2021;7(6):1–21.
  • Gupta Y, Rana P. Mhd natural convection in inclined wavy annulus utilizing hybrid nanofluid with discrete wavy coolers. J Therm Anal Calorim. 2021;143(2):1303–1318.
  • Ismail M, David Maxim Gururaj A. Radiative MHD flow of hybrid nanofluid past a porous stretching cylinder for heat transfer enhancement. Heat Transf. 2021;50(4):4019–4038.
  • Sulochana C, Kumar TP, Uma M, et al. MHD Darcy-Forchheimer hybrid nanofluid flow past a nonlinear stretching surface: Numerical study, In: IOP Conference Series: Materials Science and Engineering, Vol. 1145, IOP Publishing; 2021, p. 012042.
  • Puttaswmay V, Bijjanal Jayanna G, Doranalu Onkarappa S. Heat transfer and irreversibility rate in MHD flow of a hybrid nanofluid with newton boundary condition slip flow, and nonlinear thermal radiation. Heat Transf. 2021;50(4):3342–3365.
  • Ahmad Rusjati A. Aligned MHD mixed convection flow of hybrid nanofluid over a vertical plate with convective boundary condition [Ph.D. thesis], Universiti Teknologi Mara Perlis; 2021.
  • Rana P, Makkar V, Gupta G. Finite element modelling of MHD Stefan blowing convective Ag-MgO/water hybrid nanofluid induced by stretching cylinder utilizing non-Fourier/Ficks model. Research Square; 2021. DOI:10.21203/rs.3.rs-256505/v1.
  • Yahya AU, Siddique I, Jarad F, et al. On the enhancement of thermal transport of kerosene oil mixed TiO2 and SiO2 across Riga wedge. Case Stud Therm Eng. 2022;34:1–9. Article Id 102025.
  • Ikram MD, Asjad MI, Akgül A, et al. Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates. Alex Eng J. 2021;60(4):3593–3604.
  • Sajid T, Jamshed W, Shahzad F, et al. Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. Physica Scripta. 2021;96(10).Article Id 104010. DOI:10.1088/1402-4896/ac0f3e
  • Venkatesan G, Reddy AS. Insight into the dynamics of blood conveying alumina nanoparticles subject to Lorentz force viscous dissipation, thermal radiation, joule heating, and heat source. Euro Phys J Spec Top. 2021;230:1475–1485.
  • Nisar KS, Mohapatra R, Mishra S, et al. Semi-analytical solution of MHD free convective Jeffrey fluid flow in the presence of heat source and chemical reaction. Ain Shams Eng J. 2021;12(1):837–845.
  • Al-Kouz W, Mahanthesh B, Alqarni M, et al. A study of quadratic thermal radiation and quadratic convection on viscoelastic material flow with two different heat source modulations. Int Commun Heat Mass Transf. 2021;126.Article Id 105364. DOI:10.1016/j.icheatmasstransfer.2021.105364
  • Li YX, Rehman MIU, Huang WH, et al. Dynamics of Casson nanoparticles with non-uniform heat source/sink: a numerical analysis. Ain Shams Eng J. 2022;13(1):1–8. Article Id 101496.
  • Khodadadi R, Ghasemi B. Numerical study of natural convection heat transfer of a non-Newtonian power-law fluid inside a triangular cavity containing an isothermal heat source.J Mech Eng. 2022;52(1):119–128.
  • Yahya AU, Salamat N, Huang W-H, et al. Thermal characteristics for the flow of Williamson hybrid nanofluid (mos2+ zno) based with engine oil over a stretched sheet. Case Stud Therm Eng. 2021;26:1–10. Article Id 101196.
  • Jamshed W, Nisar KS, Ibrahim RW, et al. Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application. J Mater Res Technol. 2021;14:985–1006.
  • Ahmad F, Abdal S, Ayed H, et al. The improved thermal efficiency of Maxwell hybrid nanofluid comprising of graphene oxide plus silver/kerosene oil over stretching sheet. Case Stud Therm Eng. 2021;27:1–10. Article Id 101257.
  • Muhammad K, Hayat T, Alsaedi A. Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface. Int Commun Heat Mass Transf. 2021;121:1–10. Article Id 104805.
  • Madhukesh J, Kumar RN, Gowda RP, et al. Numerical simulation of aa7072-aa7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: a non-Fourier heat flux model approach. J Mol Liq. 2021;335:1–7. Article Id 116103.
  • Wang C. Free convection on a vertical stretching surface. ZAMM-J Appl Math and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik. 1989;69(11):418–420.
  • Khan W, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf. 2010;53(11-12):2477–2483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.