86
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Memory response in dual-phase-lag thermoelastic medium due to instantaneous heat source

ORCID Icon, ORCID Icon &
Received 07 Oct 2021, Accepted 25 Aug 2022, Published online: 14 Sep 2022

References

  • Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15(5):299–309.
  • Green A, Lindsay K. Thermoelasticity. J Elast. 1972;2(1):1–7.
  • Green A, Naghdi P. A re-examination of the basic postulates of thermomechanics. Proc R Soc Lond A. 1991;432(1885):171–194.
  • Green AE, Naghdi PM. On undamped heat waves in an elastic solid. J Therm Stress. 1992;15(2):253–264.
  • Green A, Naghdi P. Thermoelasticity without energy dissipation. J Elast. 1993;31(3):189–208.
  • Tzou DY. A unified field approach for heat conduction from macro- to micro-scales. J Heat Transf. 1995 02;117(1):8–16.
  • Tzou DY. The generalized lagging response in small-scale and high-rate heating. Int J Heat Mass Transf. 1995;38(17):3231–3240.
  • Tzou DY. Macro- to microscale heat transfer: the lagging behavior. New York: Taylor and Francis; 1997.
  • Chandrasekharaiah D. Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev. 1998;51(12):705–729.
  • Quintanilla R, Racke R. Qualitative aspects in dual-phase-lag thermoelasticity. SIAM J Appl Math. 2006;66(3):977–1001.
  • Chiriţă S. On the time differential dual-phase-lag thermoelastic model. Meccanica. 2017;52(1–2): 349–361.
  • Zenkour AM. A generalized thermoelastic dual-phase-lagging response of thick beams subjected to harmonically varying heat and pressure. J Theor Appl Mech. 2018;56(1):15–30.
  • Abbas IA, Mohamed EA. Dual-phase-lag model on generalized magneto-thermoelastic interaction in a functionally graded material. Int J Acoust Vib. 2017;22(3):369–376.
  • Mandal S, Pal Sarkar S, Roy TK. An investigation on two temperature dual-phase-lag model of thermoelasticity under fuzzy environment. Int J Appl Comput Math. 2019;(6):166.
  • Singhal A, Sahu SA. Transference of Rayleigh waves in corrugated orthotropic layer over a pre-stressed orthotropic half-space with self weight. Procedia Eng. 2017;173:972–979.
  • Chaudhary S, Sahu SA, Singhal A. On secular equation of sh waves propagating in pre-stressed and rotating piezo-composite structure with imperfect interface. J Intell Mater Syst Struct. 2018;29(10):2223–2235.
  • Sahu SA, Singhal A, Chaudhary S. Surface wave propagation in functionally graded piezoelectric material: an analytical solution. J Intell Mater Syst Struct. 2018;29(3):423–437.
  • Singh MK, Sahu SA, Singhal A, et al. Approximation of surface wave velocity in smart composite structure using Wentzel–Kramers–Brillouin method. J Intell Mater Syst Struct. 2018;29(18):3582–3597.
  • Singhal A, Sahu SA, Chaudhary S. Liouville–Green approximation: an analytical approach to study the elastic waves vibrations in composite structure of piezo material. Compos Struct. 2018;184:714–727.
  • Singhal A, Sahu SA, Chaudhary S. Approximation of surface wave frequency in piezo-composite structure. Compos Part B. 2018;144:19–28.
  • Nirwal S, Sahu SA, Singhal A, et al. Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect. Compos Part B. 2019;167:434–447.
  • Singhal A, Sahu SA, Chaudhary S, et al. Initial and couple stress influence on the surface waves transmission in material layers with imperfect interface. Mater Res Express. 2019;6(10):Article ID 105713.
  • Singhal A, Sahu SA, Nirwal S, et al. Anatomy of flexoelectricity in micro plates with dielectrically highly/weakly and mechanically complaint interface. Mater Res Express. 2019;6(10):Article ID 105714.
  • Saroj PK, Sahu SA, Singhal A, et al. On the transference of Love-type waves in pre-stressed PZT-5H material stick on SiO2 material with irregularity. Mater Res Express. 2019;6(12):Article ID 125703.
  • Chaudhary S, Sahu SA, Singhal A, et al. Interfacial imperfection study in pres-stressed rotating multiferroic cylindrical tube with wave vibration analytical approach. Mater Res Express. 2019;6(10):Article ID 105704.
  • Chaudhary S, Sahu SA, Dewangan N, et al. Stresses produced due to moving load in a prestressed piezoelectric substrate. Mech Adv Mater Struct. 2019;26(12):1028–1041.
  • Ebrahimi F, Hosseini SHS, Singhal A, et al. A comprehensive review on the modeling of smart piezoelectric nanostructures. Struct Eng Mech. 2020;74(5):611.
  • Ebrahimi F, Karimiasl M, Singhal A. Magneto-electro-elastic analysis of piezoelectric–flexoelectric nanobeams rested on silica aerogel foundation. Eng Comput. 2021;37:1007–1014.
  • Singhal A, Sedighi HM, Ebrahimi F, et al. Comparative study of the flexoelectricity effect with a highly/weakly interface in distinct piezoelectric materials (PZT-2, PZT-4, PZT-5H, LiNbO3, BaTIO3). Waves Random Complex Media. 2021;31(6):1780–1798.
  • Mandal S, Pal(Sarkar) S. On piezoelectric effect based on Green–Lindsay theory of thermoelasticity. Waves Random Complex Media. 2021;1–12. DOI:10.1080/17455030.2021.1933257.
  • Wang JL, Li HF. Surpassing the fractional derivative: concept of the memory-dependent derivative. Comput Math Appl. 2011;62(3):1562–1567.
  • Yu YJ, Hu W, Tian XG. A novel generalized thermoelasticity model based on memory-dependent derivative. Int J Eng Sci. 2014;81:123–134.
  • Ezzat MA, El-Karamany AS, El-Bary AA. Generalized thermo-viscoelasticity with memory-dependent derivatives. Int J Mech Sci. 2014;89:470–475.
  • Ezzat MA, El-Bary AA. Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J Mech Sci Technol. 2015;29(10):4273–4279.
  • Ezzat MA, El-Karamany AS, El-Bary AA. A novel magneto-thermoelasticity theory with memory-dependent derivative. J Electromagn Waves Appl. 2015;29(8):1018–1031.
  • Ezzat MA, El-Bary AA. Thermoelectric MHD with memory-dependent derivative heat transfer. Int Commun Heat Mass Transf. 2016;75:270–281.
  • Sarkar N, Ghosh D, Lahiri A. A two-dimensional magneto-thermoelastic problem based on a new two-temperature generalized thermoelasticity model with memory-dependent derivative. Mech Adv Mater Struct. 2019;26(11):957–966.
  • Shaw S, Mukhopadhyay B. A discontinuity analysis of generalized thermoelasticity theory with memory-dependent derivatives. Acta Mech. 2017;228(7):2675–2689.
  • Singh B. Thermal shock behaviour on generalized thermoelastic semi-infinite medium with moving heat source under Green Naghdi-III model. Math Models Eng. 2019;5(3):79–89.
  • Sur A, Santra S, Kanoria M. Memory response on thermal wave propagation in an elastic solid with voids due to influence of magnetic field. Waves Random Complex Media. 2021;31(6):1187–1210. DOI:10.1080/17455030.2019.1654147.
  • Shaw S. Theory of generalized thermoelasticity with memory-dependent derivatives. J Eng Mech. 2019;145(3):Article ID 04019003.
  • Sarkar I, Mukhopadhyay B. A domain of influence theorem for generalized thermoelasticity with memory-dependent derivative. J Therm Stress. 2019;42(11):1447–1457.
  • Singh B., Pal (Sarkar) S., Barman K.. Eigenfunction approach to generalized thermo-viscoelasticity with memory dependent derivative due to three-phase-lag heat transfer. J Therm Stress. 2020;43(9):1100–1119.
  • Sarkar I, Mukhopadhyay B. On the spatial behavior of thermal signals in generalized thermoelasticity with memory-dependent derivative. Acta Mech. 2020;231:2989–3001.
  • Singh B, Pal (Sarkar) SP. Magneto-thermoelastic interaction in transversely isotropic medium with memory dependent derivative under three theories. Waves Random Complex Media. 2020;1–21. DOI:10.1080/17455030.2020.1859162.
  • Sarkar I, Mukhopadhyay B. On energy, uniqueness theorems and variational principle for generalized thermoelasticity with memory-dependent derivative. Int J Heat Mass Transf. 2020;149:Article ID 119112.
  • Singh B, Pal (Sarkar) S. Magneto-thermoelastic interaction with memory response due to laser pulse under Green-Naghdi theory in an orthotropic medium. Mech Des Struct Mach. 2022;50(9):3105-3122. DOI:10.1080/15397734.2020.1798780.
  • Singh B, Sarkar I, Pal S. Temperature-rate-dependent thermoelasticity theory with memory-dependent derivative: energy, uniqueness theorems, and variational principle. J Heat Transf. 2020;142(10):Article ID 102103.
  • Mandal S, Middya M, Sarkar SP. Two temperature generalized thermoelasticity involving memory-dependent derivative under fuzzy environment. Waves Random Complex Media. 2021;1–16. DOI:10.1080/17455030.2021.1983229.
  • Das N, Bhakta P. Eigenfunction expansion method to the solution of simultaneous equations and its application in mechanics. Mech Res Commun. 1985;12(1):19–29.
  • Biot MA. Thermoelasticity and irreversible thermodynamics. J Appl Phys. 1956;27(3):240–253.
  • Honig G, Hirdes U. A method for the numerical inversion of laplace transforms. J Comput Appl Math. 1984;10(1):113–132.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.