177
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A novel method for solving third-order nonlinear Schrödinger equation by deep learning

Received 07 Oct 2021, Accepted 12 Sep 2022, Published online: 03 Oct 2022

References

  • Hesegawa A, Kodama Y. Solitons in optical communication. Oxford: Oxford University Press; 1995.
  • Smirnov F. Form factors in completely integrable models of quantum field theory. Singapore: World Scientific; 1992.
  • Mio K, Ogino T, Minami K, et al. Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas. J Phys Soc Japan. 1976;41:265–271.
  • Tao Y, He J. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys Rev E. 2012;85:026601.
  • Kodama Y, Hasegawa A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J Quantum Electron. 1987;23:510–524.
  • Akhmediev N, Ankiewicz A, Sotocrespo JM. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Phys Rev E. 2009;80:026601.
  • Yan ZY. Financial rogue waves. Commun Theor Phys. 2010;11:947–949.
  • Kibler B, Fatome J, Finot C, et al. The Peregrine soliton in nonlinear fibre optics. Nat Phys. 2010;6:790.
  • Bala P, Gill TS. Solitons and rogue waves for Kadomstev–Petviashvili equation in superthermal dusty plasma with polarization force. Asian J Phys. 2021;30:137–150.
  • Zhang R, Li M, Albeshari M, et al. Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey–Dodd–Gibbon–Kotera–Sawada-like equation. Appl Math Comput. 2021;403:126201.
  • Du XX, Tian B, Qu QX, et al. Lumps and rogue waves on the periodic backgrounds for a (2 + 1)-dimensional nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain. Mode Phys Lett B. 2021;35:2150321.
  • Lan ZZ, Su JJ. Solitary and rogue waves with controllable backgrounds for the non-autonomous generalized AB system. Nonlinear Dyn. 2019;96:2535-–2546.
  • Bai Y, Chaolu T, Bilige S. Physics informed by deep learning: numerical solutions of modified Korteweg–de Vries equation. Adv Math Phys. 2021;2021:1–11.
  • Raissi M, Karniadakis GE. Hidden physics models: machine learning of nonlinear partial differential equations. J Comput Phys. 2018;357:125–141.
  • Raissia M, Perdikarisb P, Karniadakisa GE. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686-–707.
  • Hurtado DE, Costabal FS, Yang Y, et al. Physics-informed neural networks for cardiac activation mapping. Front Phys. 2020;357:42.
  • Lu L, Meng X, Mao Z, et al. DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 2021;63:208–228.
  • Jin X, Cai S, Li H, et al. NSFnets (Navier–Stokes Flow nets): Physics-informed neural networks for the incompressible Navier–Stokes equations. preprint 2020. Available from arXiv:2003.06496.
  • Costabal FS, Yang Y, Perdikaris P, et al. Physics-informed neural networks for cardiac activation mapping. Front Phys. 2020;8:42.
  • Zhang E, Yin M, Karniadakis GE. Physics-informed neural networks for nonhomogeneous material identification in elasticity imaging. preprint 2020. Available from arXiv:2009.04525.
  • Kunc V, Kléma J. On transformative adaptive activation functions in neural networks for gene expression inference. bioRxiv. 2019; DOI: 10.1101/587287.
  • Pu J, Li J, Chen Y. Solving localized wave solutions of the derivative nonlinear Schrodinger equation using an improved PINN method. Preprint 2021. Available from arXiv: 2101.08593.
  • Pu J, Chen Y. The data-driven vector localized waves of Manakov system using improved PINN approach. Preprint 2021. Available from arXiv: 2109.09266.
  • Jagtap AD, Kawaguchi K, Karniadakis GE. Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks. Preprint 2019. Available from arXiv:1909.12228.
  • Tao YS, He JS. Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation. Phys Rev E. 2012;85:026601.
  • Hirota R. Exact envelope-soliton solutions of a nonlinear wave equation. J Math Phys. 1973;14:805–809.
  • Dubard P, Gaillard P, Klein C, et al. On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur Phys J Special Topics. 2010;185:247–258.
  • Stein M. Large sample properties of simulations using Latin hypercube sampling. Technometrics. 1987;29:143–151.
  • Kingma D, Ba J. Adam: A method for stochastic optimization. Computer Science; Preprint 2014. Available from arXiv:1412.6980v9.
  • Liu DC, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Program. 1989;45:503–528.
  • Ankiewicz A, Soto-Crespo JM, Akhmediev N. Rogue waves and rational solutions of the Hirota equation. Phys Rev E. 2010;81:046602.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.