85
Views
0
CrossRef citations to date
0
Altmetric
Rough Surface Scattering, Complex Targets, and Remote Sensing

The fast methods of high-frequency wave scattering in complex media and structures

&
Pages 1486-1503 | Received 10 Nov 2021, Accepted 21 Aug 2022, Published online: 06 Nov 2023

References

  • Knott EF. A progression of high-frequency RCS prediction techniques. Proc IEEE. 1985 Feb;73(2):252–264.
  • Ludwig A. Computation of radiation patterns involving numerical double integration. IEEE Trans Antennas Propag. 1968 Nov;16(6):767–769.
  • Gordon W. Far-field approximations to the Kirchhoff–Helmholtz representations of scattered fields. IEEE Trans Antennas Propag. 1975 Jul;23(4):590–592.
  • Wu YM, Jiang LJ, Chew WC. An efficient method for computing highly oscillatory physical optics integral. Prog Electromagn Res. 2012 Apr;127:211–257.
  • Wu YM, Teng SJ. Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations. J Comput Phys. 2016 Nov;324:44–61.
  • Wu YM, Chew WC. The modern high frequency methods for solving electromagnetic scattering problems. Prog Electromagn Res. 2016 May;156:63–82.
  • Zhang N, Wu YM, Hu J, et al. The fast physical optics method on calculating the scattered fields from electrically large scatterers. IEEE Trans Antennas Propag. 2020;68(3):2267–2276.
  • Wu YM, Jiang LJ, Chew WC. Computing highly oscillatory physical optics integral on the polygonal domain by an efficient numerical steepest descent path method. J Comput Phys. 2013 Mar;236:408–425.
  • Zhang N, Wu YM, Jin YQ, et al. The two-dimensional numerical steepest descent path method for calculating the physical optics scattered fields from different quadratic patches. IEEE Trans Antennas Propag. 2020 Mar;68(3):2246–2255.
  • Conde OM, Perez J, Catedra MP. Stationary phase method application for the analysis of radiation of complex 3-D conducting structures. IEEE Trans Antennas Propag. 2001 May;49(5):724–731.
  • Carluccio G, Albani M. Efficient adaptive numerical integration algorithms for the evaluation of surface radiation integrals in the high-frequency regime. Radio Sci. 2011 Oct;46(5):1–8.
  • Zhang J, Bo X, Cui TJ. An alternative treatment of saddle stationary phase points in physical optics for smooth surfaces. IEEE Trans Antennas Propag. 2014;62(2):986–991.
  • Boag A. A fast physical optics (FPO) algorithm for high frequency scattering. IEEE Trans Antennas Propag. 2004 Jan;52(1):197–204.
  • Gendelman A, Brick Y, Boag A. Multilevel physical optics algorithm for near field scattering. IEEE Trans Antennas Propag. 2014 Aug;62(8):4325–4335.
  • Brick Y, Boag A. Multilevel nonuniform grid algorithm for acceleration of integral equation-based solvers for acoustic scattering. IEEE Trans Ultrason Eng. 2010 Jan;57(1):262–273.
  • Boag A. A fast iterative physical optics (FIPO) algorithm based on non-uniform polar grid interpolation. Microw Opt Technol Lett. 2002;35(3):240–244.
  • Liu J, Guo LX. Evaluation of physical optics integrals from B-spline surfaces by means of a fast locating algorithm of stationary points. IEEE Trans Antennas Propag. 2017;65(3):1495–1499.
  • Boag A, Michielssen E. A fast physical optics (FPO) algorithm for double-bounce scattering. IEEE Trans Antennas Propag. 2004;52(1):205–212.
  • Wu YM, Jiang LJ, Chew WC. The numerical steepest descent path method for calculating physical optics integrals on smooth conducting quadratic surfaces. IEEE Trans Antennas Propag. 2013;61(8):4183–4193.
  • Wu YM, Chew WC, Jin YQ, et al. An efficient numerical contour deformation method for calculating electromagnetic scattered fields from 3-D convex scatterers. Prog Electromagn Res. 2017;158:109–119.
  • Wu YM, Jiang LJ, Chew WC, et al. The contour deformation method for calculating the high-frequency scattered field by the Fock current on the surface of the 3-D convex cylinder. IEEE Trans Antennas Propag. 2015 May;63(5):2180–2190.
  • Botha MM, Davidson DB. The implicit, element residual method for a posteriori error estimation in FE-BI analysis. IEEE Trans Antennas Propag. 2006;54(1):255–258.
  • Harmon JJ, Key C, Estep D, et al. Adjoint-based accelerated adaptive refinement in frequency domain 3-D finite element method scattering problems. IEEE Trans Antennas Propag. 2021;69(2):940–949.
  • Vasquez J, Peng Z, Lee JF, et al. Automatic localized nonconformal mesh refinement for surface integral equations. IEEE Trans Antennas Propag. 2020;68(2):967–975.
  • Burkholder RJ, Lee TH. Adaptive sampling for fast physical optics numerical integration. IEEE Trans Antennas Propag. 2005;53(5):1843–1845.
  • Carluccio G, Albani M. Efficient adaptive numerical integration algorithms for the evaluation of surface radiation integrals in the high-frequency regime. Radio Sci. 2011;46(5):1–8.
  • Giovampaola CD, Carluccio G, Puggelli P, et al. Efficient algorithm for the evaluation of the physical optics scattering by NURBS surfaces with relatively general boundary condition. IEEE Trans Antennas Propag. 2013;61(8):4194–4203.
  • Song J, Lu CC, Chew WC. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag. 1997;45(10):1488–1493.
  • Michielssen E, Boag A. Multilevel evaluation of electromagnetic fields for the rapid solution of scattering problems. Microw Opt Technol Lett. 1994 Dec;7(17):790–795.
  • Boag A. A fast multilevel domain decomposition algorithm for radar imaging. IEEE Trans Antennas Propag. 2001 Apr;49(4):666–671.
  • Roudstein M, Brick Y, Boag A. Multilevel physical optics algorithm for near-field double-bounce scattering. IEEE Trans Antennas Propag. 2015 Nov;63(11):5015–5025.
  • Zhang N, Wu YM, Jin YQ. Multilevel second-order physical optics method for calculating the high-frequency scattered fields. IEEE Antennas Wirel Propag Lett. 2020 Apr;19(4):651–655.
  • Xue ZY, Wu YM, Chew WC, et al. The multilevel fast physical optics method for calculating high frequency scattered fields. Prog Electromagn Res. 2020;169:1–15.
  • Jakobus U, Landstorfer FM. Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape. IEEE Trans Antennas Propag. 1995;43(2):162–169.
  • Moneum M, Shen ZX, Volakis JL, et al. Hybrid PO-MoM analysis of large axisymmetric radomes. IEEE Trans Antennas Propag. 2002;49(12):1657–1666.
  • Han DH, Polycarpou AC, Balanis CA. Hybrid analysis of reflector antennas including higher order interactions and blockage effects. IEEE Trans Antennas Propag. 2002;50(11):1514–1524.
  • Ming C, Zhang Y, Zhao XW, et al. Analysis of antenna around NURBS surface with hybrid MoM-PO technique. IEEE Trans Antennas Propag. 2007;55:407–413.
  • Kai H, He ZL, Liang CH. Efficient analysis of antenna around electrically large NURBS platform with accelerating MoM-Po method. IEEE Antennas Wirel Propag Lett. 2010;9:134–137.
  • Yu DF, He SY, Chen X, et al. Simulation of electromagnetic scattering for 3-D impedance surface using MoM-PO method. IEEE Trans Antennas Propag. 2012;60(8):3988–3991.
  • Ma J, Gong SX, Wang X, et al. Efficient wide-band analysis of antennas around a conducting platform using MoM-PO hybrid method and asymptotic waveform evaluation technique. IEEE Trans Antennas Propag. 2012;60(12):6048–6052.
  • Djordjevic M, Notaros BM. Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces. IEEE Trans Antennas Propag. 2005;53(2):800–813.
  • Chen HT, Zhu GQ, Luo JX, et al. A modified MoM-PO method for analyzing wire antennas near to coated PEC plates. IEEE Trans Antennas Propag. 2008;56(6):1818–1822.
  • Zhao WJ, Li LW, Hu L. Efficient current-based hybrid analysis of wire antennas mounted on a large realistic aircraft. IEEE Trans Antennas Propag. 2010;58(8):2666–2672.
  • Zhang Y, Lin H. MLFMA-PO hybrid technique for efficient analysis of electrically large structures. IEEE Antennas Wirel Propag Lett. 2015;13:1676–1679.
  • Hodges R, Rahmat-Samii Y. An iterative current-based hybrid method for complex structures. IEEE Trans Antennas Propag. 2002;45(2):265–276.
  • Liu ZL, Wang CF. Efficient iterative method of moments-physical optics hybrid technique for electrically large objects. IEEE Trans Antennas Propag. 2012;60(7):3520–3525.
  • Wang X, Gong SX, Ma J, et al. Efficient analysis of antennas mounted on large-scale complex platforms using hybrid AIM-PO technique. IEEE Trans Antennas Propag. 2014;62(3):1517–1523.
  • Liu ZL, Wang CF. An efficient iterative MoM-PO hybrid method for analysis of an onboard wire antenna array on a large-scale platform above an infinite ground. IEEE Antennas Propagat Mag. 2013;55(6):69–78.
  • Crabtree GD. A numerical quadrature technique for physical optics scattering analysis. IEEE Trans Magn. 1991;27(5):4291–4294.
  • Rao S, Wilton D, Glisson A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag. 1982;30(3):409–418.
  • Glisson A, Wilton D. Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces. IEEE Trans Antennas Propag. 1980;28(5):593–603.
  • Liu ZL, Yang J. Analysis of electromagnetic scattering with higher-order moment method and NURBS model. Prog Electromagn Res. 2009;96:83–100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.