100
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Neuro-computing-based Levenberg Marquardt algorithm for entropy optimized Darcy-Forchheimer nanofluid with variable viscosity

, , ORCID Icon, & ORCID Icon
Received 18 Mar 2022, Accepted 26 Sep 2022, Published online: 12 Nov 2022

References

  • Khan MI. Transportation of hybrid nanoparticles in forced convective Darcy-Forchheimer flow by a rotating disk. Int Commun Heat Mass Transfer. Mar. 2021;122:105177, doi:10.1016/j.icheatmasstransfer.2021.105177.
  • Nayak MK, Mabood F, Tlili I, et al. Entropy optimization analysis on nonlinear thermal radiative electromagnetic Darcy–Forchheimer flow of SWCNT/MWCNT nanomaterials. Appl Nanosci. Feb. 2021;11(2):399–418. doi:10.1007/s13204-020-01611-8.
  • Mallikarjuna HB, Nirmala T, Gowda RJP, et al. Two-dimensional Darcy–Forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation. Heat Transfer. 2021;50(4):3934–3947. doi:10.1002/htj.22058.
  • Xiong P-Y, Hamid A, Chu Y-M, et al. Dynamics of multiple solutions of Darcy–Forchheimer saturated flow of cross nanofluid by a vertical thin needle point. Eur Phys J Plus. Mar. 2021;136(3):315. doi:10.1140/epjp/s13360-021-01294-2.
  • Haider F, Hayat T, Alsaedi A. Flow of hybrid nanofluid through Darcy-Forchheimer porous space with variable characteristics. Alexandria Eng J. Jun. 2021;60(3):3047–3056. doi:10.1016/j.aej.2021.01.021.
  • Majeed A, Zeeshan A, Noori FM. Analysis of chemically reactive species with mixed convection and Darcy–Forchheimer flow under activation energy: a novel application for geothermal reservoirs. J Therm Anal Calorim. 2020;140(5):2357–2367.
  • Majeed A, Zeeshan A, Noori FM. Numerical study of Darcy-Forchheimer model with activation energy subject to chemically reactive species and momentum slip of order two. AIP Adv. 2019;9(4):045035.
  • Bhatti MM, Zeeshan A, Bashir F, et al. Sinusoidal motion of small particles through a Darcy-Brinkman-Forchheimer microchannel filled with non-Newtonian fluid under electro-osmotic forces. J Taibah Univ Sci. 2021;15(1):514–529.
  • Khan MI, Alzahrani F. Cattaneo-Christov double diffusion (CCDD) and magnetized stagnation point flow of non-Newtonian fluid with internal resistance of particles. Phys Scr. Nov. 2020;95(12):125002, doi:10.1088/1402-4896/abc0c2.
  • Ahmed A, Khan M, Irfan M, et al. Transient MHD flow of Maxwell nanofluid subject to non-linear thermal radiation and convective heat transport. Appl Nanosci. Dec. 2020;10(12):5361–5373. doi:10.1007/s13204-020-01375-1.
  • Gowda RJP, Kumar RN, Rauf A, et al. Magnetized flow of Sutterby nanofluid through Cattaneo-Christov theory of heat diffusion and Stefan blowing condition. Appl Nanosci. May 2021. doi:10.1007/s13204-021-01863-y.
  • Kumar RSV, Dhananjaya PG, Kumar RN, et al. Modeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reaction. Int J Comput Methods Eng Sci Mech. Mar. 2021;0(0):1–8. doi:10.1080/15502287.2021.1900451.
  • Khan MI, Alzahrani F. Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy. Math Comput Simul. Jul. 2021;185:47–61. doi:10.1016/j.matcom.2020.12.004.
  • Chu Y-M, Nazeer M, Ijaz Khan M, et al. Combined impacts of heat source/sink, radiative heat flux, temperature dependent thermal conductivity on forced convective Rabinowitsch fluid. Int Commun Heat Mass Transfer. Jan. 2021;120:105011. doi:10.1016/j.icheatmasstransfer.2020.105011.
  • Ali U, Malik MY, Alderremy AA, et al. A generalized finding on thermal radiation and heat generation/absorption in nanofluid flow regime. Physica A. Sep. 2020;553:124026, doi:10.1016/j.physa.2019.124026.
  • Punith Gowda RJ, Naveen Kumar R, Jyothi AM, et al. Impact of binary chemical reaction and activation energy on heat and mass transfer of Marangoni driven boundary layer flow of a non-Newtonian nanofluid. Processes. Apr. 2021;9(4):702, doi:10.3390/pr9040702. Art. no. 4
  • Jamshed W, Nisar KS, Gowda RJP, et al. Radiative heat transfer of second grade nanofluid flow past a porous flat surface: a single-phase mathematical model. Phys Scr. Apr. 2021;96(6):064006, doi:10.1088/1402-4896/abf57d.
  • Nadeem S, Ijaz M, Ayub M. Darcy–Forchheimer flow under rotating disk and entropy generation with thermal radiation and heat source/sink. J Therm Anal Calorim. Feb. 2021;143(3):2313–2328. doi:10.1007/s10973-020-09737-1.
  • Mohamed RA, Abbas IA, Abo-Dahab SM. Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction. Commun Nonlinear Sci Numer Simul. 2009;14(4):1385–1395.
  • Abbas IA. Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole. J Comput Theor Nanosci. 2014;11(2):380–384.
  • Abbas IA, Alzahrani FS, Elaiw A. A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media. 2019;29(2):328–343.
  • Abo-Dahab SM, Abbas IA. LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. Appl Math Model. 2011;35(8):3759–3768.
  • Abbas IA. Analytical solution for a free vibration of a thermoelastic hollow sphere. Mech Based Des Struct Mach. 2015;43(3):265–276.
  • Kumar R, Gupta V, Abbas IA. Plane deformation due to thermal source in fractional order thermoelastic media. J Comput Theor Nanosci. 2013;10(10):2520–2525.
  • Riaz A, Zeeshan A, Bhatti MM. Entropy analysis on a three-dimensional wavy flow of eyring–powell nanofluid: a comparative study. Math Probl Eng. 2021;2021:6672158.
  • Abbas MA, Bég OA, Zeeshan A, et al. Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization. Therm Sci Eng Prog. 2021;24:100930.
  • Ijaz Khan M, Qayyum S, Shah F, et al. Marangoni convective flow of hybrid nanofluid (MnZnFe2O4-NiZnFe2O4-H2O) with Darcy Forchheimer medium. Ain Shams Eng J. Mar. 2021;12 (4):3931–3938. doi:10.1016/j.asej.2021.01.028.
  • Xiong P-Y, Khan MI, Gowda RJP, et al. Comparative analysis of (zinc ferrite, nickel zinc ferrite) hybrid nanofluids slip flow with entropy generation. Mod Phys Lett B. May 2021;35 (20): 2150342, doi:10.1142/S0217984921503425.
  • Yusuf TA, Mabood F, Prasannakumara BC, et al. Magneto-bioconvection flow of Williamson nanofluid over an inclined plate with gyrotactic microorganisms and entropy generation. Fluids. Mar. 2021;6(3):109. doi:10.3390/fluids6030109.
  • Monaledi RL, Makinde OD. Entropy generation analysis in a microchannel Poiseuille flows of nanofluid with nanoparticles injection and variable properties. J Therm Anal Calorim. Feb. 2021;143(3):1855–1865. doi:10.1007/s10973-020-09919-x.
  • Ahmad S, Hayat T, Alsaedi A. Computational analysis of entropy generation in radiative viscous fluid flow. J Therm Anal Calorim. Feb. 2021;143(3):2665–2677. doi:10.1007/s10973-020-09684-x.
  • Shah Z, Raja MAZ, Chu Y-M, et al. Design of neural network based intelligent computing for neumerical treatment of unsteady 3D flow of eyring-powell magneto-nanofluidic model. J Mater Res Technol. Nov. 2020;9(6):14372–14387. doi:10.1016/j.jmrt.2020.09.098.
  • Almalki MM, Alaidarous ES, Maturi DA, et al. A Levenberg–Marquardt backpropagation neural network for the numerical treatment of squeezing flow With heat transfer model. IEEE Access. 2020;8:227340–227348. doi:10.1109/ACCESS.2020.3044973.
  • Shah Z, Raja MAZ, Chu Y-M, et al. Computational intelligence of Levenberg-Marquardt backpropagation neural networks to study the dynamics of expanding/contracting cylinder for cross magneto-nanofluid flow model. Phys Scr. Mar. 2021;96(5):055219. doi:10.1088/1402-4896/abe068.
  • Aljohani JL, Alaidarous ES, Raja MAZ, et al. Intelligent computing through neural networks for numerical treatment of non-Newtonian wire coating analysis model. Sci Rep. Apr. 2021;11(1). doi:10.1038/s41598-021-88499-8. Art. no. 1
  • Ilyas H, Ahmad I, Raja MAZ, et al. Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions. Int J Hydrogen Energy. Jan. 2021;46(7):4947–4980. doi:10.1016/j.ijhydene.2020.11.097.
  • Shaiq S, Maraj EN, Iqbal Z. Remarkable role of C3H8O2 on transportation of MoS2− SiO2 hybrid nanoparticles influenced by thermal deposition and internal heat generation. J Phys Chem Solids. 2019;126:294–303.
  • Abbas SZ, Khan WA, Kadry S, et al. Entropy optimized Darcy-Forchheimer nanofluid (silicon dioxide, molybdenum disulfide) subject to temperature dependent viscosity. Comput Methods Programs Biomed. 2020;190:105363.
  • Khan MI, Nigar M, Hayat T, et al. On the numerical simulation of stagnation point flow of non-Newtonian fluid (Carreau fluid) with Cattaneo-Christov heat flux. Comput Methods Programs Biomed. 2020;187:105221.
  • Khan MWA, Khan MI, Hayat T, et al. Numerical solution of MHD flow of power law fluid subject to convective boundary conditions and entropy generation. Comput Methods Programs Biomed. 2020;188:105262.
  • Hayat T, Muhammad K, Khan MI, et al. Theoretical investigation of chemically reactive flow of water based carbon nanotubes with melting heat transfer. Pramana-J Phys. 2019;92:57.
  • Khan MI, Shah F, Hayat T, et al. Transportation of CNTs based nanomaterial flow confined between two coaxially rotating disks with entropy generation. Physica A. 2019;527:121154.
  • Khan MI, Alzahrani F. Transportation of heat through Cattaneo-Christov heat flux model in non-Newtonian fluid subject to internal resistance of particles. Appl Math Mech (Engl). 2020;41 (8):1157–1166.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.