175
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Significance of non-Fourier heat conduction in the thermal analysis of a wet semi-spherical fin with internal heat generation

, & ORCID Icon
Received 30 Dec 2021, Accepted 04 Oct 2022, Published online: 17 Oct 2022

References

  • Abbas N, Nadeem S, Saleem A, et al. Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder. Chin J Phys. Feb. 2021;69:109–117. doi:10.1016/j.cjph.2020.11.019.
  • Varun Kumar RS, Alhadhrami A, Punith Gowda RJ, et al. Exploration of Arrhenius activation energy on hybrid nanofluid flow over a curved stretchable surface. J Appl Math Mech / Zeitschrift für Angewandte Mathematik und Mechanik. 2021;101(12):e202100035. doi:10.1002/zamm.202100035.
  • Waqas H, Farooq U, Shah Z, et al. Second-order slip effect on bio-convectional viscoelastic nanofluid flow through a stretching cylinder with swimming microorganisms and melting phenomenon. Sci Rep. May 2021;11(1):11208. doi:10.1038/s41598-021-90671-z.
  • Madhukesh J, Alhadhrami A, Naveen Kumar R, et al. Physical insights into the heat and mass transfer in Casson hybrid nanofluid flow induced by a Riga plate with thermophoretic particle deposition. P I Mech Eng E-J Pro. Aug. 2021: 09544089211039305. doi:10.1177/09544089211039305.
  • Hamid A, Naveen Kumar R, Punith Gowda RJ, et al. Impact of Hall current and homogenous–heterogenous reactions on MHD flow of GO-MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface. Waves Random Complex Media. Oct. 2021;0(0):1–18. doi:10.1080/17455030.2021.1985746.
  • Sun T-C, DarAssi MH, Bilal M, et al. The study of Darcy-Forchheimer hybrid nanofluid flow with the thermal slip and dissipation effect using parametric continuation approach over a rotating disk. Waves Random Complex Media. May 2022;0(0):1–14. doi:10.1080/17455030.2022.2072537.
  • Paramesh SO, Prasanna GD. Melting heat transfer phenomena on Maxwell nanofluid flow with homogeneous-heterogeneous reactions: a thermophysical properties of nanoparticle aggregation approach. Waves Random Complex Media. Jul. 2022;0(0):1–18. doi:10.1080/17455030.2022.2096942.
  • Jayaprakash MC, Alsulami MD, Shanker B, et al. Investigation of Arrhenius activation energy and convective heat transfer efficiency in radiative hybrid nanofluid flow. Waves Random Complex Media. Jan. 2022;0(0):1–13. doi:10.1080/17455030.2021.2022811.
  • Akbar Y, Abbasi FM, Shehzad SA. Thermal radiation and Hall effects in mixed convective peristaltic transport of nanofluid with entropy generation. Appl Nanosci. Dec. 2020;10(12):5421–5433. doi:10.1007/s13204-020-01446-3.
  • Ghosh S, Mukhopadhyay S. Unsteady MHD three-dimensional flow of nanofluid over a stretching surface with zero nanoparticles flux and thermal radiation. Waves Random Complex Media. Aug. 2021;0(0):1–17. doi:10.1080/17455030.2021.1965671.
  • Hayat T, Ahmad MW, Shehzad SA, et al. Three-dimensional unsteady squeezing flow with irreversibility. J. Cent. South Univ. Nov. 2021;28(11):3368–3380. doi:10.1007/s11771-021-4861-0.
  • Musa A, Hamid A, Yasir M, et al. Effect of nonlinear thermal radiation and melting heat transfer assessment on magneto-nanofluid through a shrinking surface. Waves Random Complex Media. Jun. 2022;0(0):1–18. doi:10.1080/17455030.2022.2084575.
  • Varun Kumar RS, Saleh B, Sowmya G, et al. Exploration of transient heat transfer through a moving plate with exponentially temperature-dependent thermal properties. Waves Random Complex Media. Mar. 2022;0(0):1–19. doi:10.1080/17455030.2022.2056256.
  • Acharya N, Mabood F, Shahzad SA, et al. Hydrothermal variations of radiative nanofluid flow by the influence of nanoparticles diameter and nanolayer. Int Commun Heat Mass Transfer. Jan. 2022;130:105781. doi:10.1016/j.icheatmasstransfer.2021.105781.
  • Ndlovu PL, Moitsheki RJ. Analysis of a convective-radiative continuously moving fin with temperature-dependent thermal conductivity. Int J Nonlinear Sci Numer Simul. Jun. 2020;21(3–4):379–388. doi:10.1515/ijnsns-2018-0206.
  • Jayaprakash MC, Alzahrani HA, Sowmya G, et al. Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant. Case Studies in Thermal Engineering. Dec. 2021;28:101697. doi:10.1016/j.csite.2021.101697.
  • Turkyilmazoglu M. Thermal performance of optimum exponential fin profiles subjected to a temperature jump. Int J Numer Methods Heat Fluid Flow. Jan. 2021;ahead-of-print(ahead-of-print). doi:10.1108/HFF-02-2021-0132.
  • Kundu B, Yook S-J. An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects – analytical and unified assessment. Appl Math Comput. Aug. 2021;402:126124. doi:10.1016/j.amc.2021.126124.
  • Sowmya G, Varun Kumar RS, Alsulami MD, et al. Thermal stress and temperature distribution of an annular fin with variable temperature-dependent thermal properties and magnetic field using DTM-Pade approximant. Waves Random Complex Media. Feb. 2022;0(0):1–29. doi:10.1080/17455030.2022.2039421.
  • Hatami M, Ganji DD. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis. Int J Refrig. Apr. 2014;40:140–151. doi:10.1016/j.ijrefrig.2013.11.002.
  • Turkyilmazoglu M. Efficiency of heat and mass transfer in fully wet porous fins: exponential fins versus straight fins. Int J Refrig. Oct. 2014;46:158–164. doi:10.1016/j.ijrefrig.2014.04.011.
  • Das R, Kundu B. New forward and inverse solutions for wet fins generalized profiles with all nonlinear phenomena. J Heat Transfer. Nov. 2020;143(2). doi:10.1115/1.4048923.
  • Talbi N, Kezzar M, Malaver M, et al. Increment of heat transfer by graphene-oxide and molybdenum-disulfide nanoparticles in ethylene glycol solution as working nanofluid in penetrable moveable longitudinal fin. Waves Random Complex Media. Jan. 2022;0(0):1–23. doi:10.1080/17455030.2022.2026527.
  • Goud JS, Srilatha P, Varun Kumar RS, et al. Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Studies Therm Eng. Jul. 2022;35:102113. doi:10.1016/j.csite.2022.102113.
  • Sabbaghi S, Rezaii A, Shahri GR, et al. Mathematical analysis for the efficiency of a semi-spherical fin with simultaneous heat and mass transfer. Int J Refrig. Dec. 2011;34(8):1877–1882. doi:10.1016/j.ijrefrig.2011.06.014.
  • Hatami M, Mehdizadeh Ahangar GHR, Ganji DD, et al. Refrigeration efficiency analysis for fully wet semi-spherical porous fins. Energy Convers Manage. Aug. 2014;84:533–540. doi:10.1016/j.enconman.2014.05.007.
  • Atouei SA, Hosseinzadeh K, Hatami M, et al. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods. Appl Therm Eng. Oct. 2015;89:299–305. doi:10.1016/j.applthermaleng.2015.05.084.
  • Manohar GR, Venkatesh P, Gireesha BJ, et al. Dynamics of hybrid nanofluid through a semi spherical porous fin with internal heat generation. Partial Dif Eq Appl Math. Dec. 2021;4:100150. doi:10.1016/j.padiff.2021.100150.
  • Jagadeesha KC, Varun Kumar RS, Elattar S, et al. A physical depiction of a semi-spherical fin unsteady heat transfer and thermal analysis of a fully wetted convective-radiative semi-spherical fin. J Indian Chem Soc. Apr. 2022: 100457. doi:10.1016/j.jics.2022.100457.
  • Kundu B, Lee K-S. A non-Fourier analysis for transmitting heat in fins with internal heat generation. Int J Heat Mass Transfer. Sep. 2013;64:1153–1162. doi:10.1016/j.ijheatmasstransfer.2013.05.057.
  • Zhang L, Shang X. Analytical solution to non-Fourier heat conduction as a laser beam irradiating on local surface of a semi-infinite medium. Int J Heat Mass Transfer. Jun. 2015;85:772–780. doi:10.1016/j.ijheatmasstransfer.2015.02.024.
  • Wankhade PA, Kundu B, Das R. Establishment of non-Fourier heat conduction model for an accurate transient thermal response in wet fins. Int J Heat Mass Transfer. Nov. 2018;126:911–923. doi:10.1016/j.ijheatmasstransfer.2018.05.094.
  • Liu Y, Li L, Zhang Y. Numerical simulation of non-Fourier heat conduction in fins by lattice Boltzmann method. Appl Therm Eng. Feb. 2020;166:114670. doi:10.1016/j.applthermaleng.2019.114670.
  • Weera W, Varun Kumar RS, Sowmya G, et al. Convective-radiative thermal investigation of a porous dovetail fin using spectral collocation method. Ain Shams Eng J. May 2022: 101811. doi:10.1016/j.asej.2022.101811.
  • Sharqawy MH, Zubair SM. Efficiency and optimization of an annular fin with combined heat and mass transfer – An analytical solution. Int J Refrig. Aug. 2007;30(5):751–757. doi:10.1016/j.ijrefrig.2006.12.008.
  • Sowmya G, Sarris IE, Vishalakshi CS, et al. Analysis of transient thermal distribution in a convective–radiative moving Rod using two-dimensional differential transform method with multivariate pade approximant. Symmetry. Oct. 2021;13(10):Art. no. 10. doi:10.3390/sym13101793.
  • Nematollahzadeh A, Jangara H. Exact analytical and numerical solutions for convective heat transfer in a semi-spherical extended surface with regular singular points. Iran J Chem Chem Eng (IJCCE). Jun. 2021;40(3):980–989. doi:10.30492/ijcce.2020.38037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.