45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermo-mechanical waves of excited microelongated semiconductor layer during photothermal transport processes

ORCID Icon
Received 04 Mar 2022, Accepted 05 Dec 2022, Published online: 14 Dec 2022

References

  • Eringen AC. Microcontinuum field theories. Vol. 1, Foundations and solids. New York: Springer Verlag; 1999.
  • Eringen AC. Linear theory of micropolar elasticity. J Math Mech. 1966;15(6):909–923.
  • Eringen AC. Theory of thermo-microstretch elastic solids. Int J Eng Sci. 1990;28(12):1291–1301.
  • Singh B. Reflection and refraction of plane waves at a liquid/thermo-microstretch elastic solid interface. Int J Eng Sci. 2001;39(5):583–598.
  • Othman M, Lotfy K. The influence of gravity on 2-D problem of two temperature generalized thermoelastic medium with thermal relaxation. J Comput Theor Nanosci. 2015;12:2587–2600.
  • De Cicco S, Nappa L. On the theory of thermomicrostretch elastic solids. J Therm Stress. 1999;22(6):565–580.
  • Othman M, Lotfy K. On the plane waves of generalized thermo-microstretch elastic half-space under three theories. Int Comm Heat Mass Trans. 2010;37(2):192–200.
  • Lotfy K, Abo-Dahab SM. Two-dimensional problem of two temperature generalized thermoelasticity with normal mode analysis under thermal shock problem. J Comput Theor Nanosci. 2015;12(8):1709–1719.
  • Lotfy K, Othman M. Effect of rotation on plane waves in generalized thermo-microstretch elastic solid with a relaxation time. Meccanica. 2012;47:1467–1486.
  • Ramesh G, Prasannakumara B, Gireesha B, et al. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J Appl Fluid Mech. 2016;9(3):1115–1022.
  • Ezzat M, Abd-Elaal M. Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium. J Franklin Inst. 1997;334(4):685–706.
  • Shaw S, Mukhopadhyay B. Periodically varying heat source response in a functionally graded microelongated medium. Appl Math Comput. 2012;218(11):6304–6313.
  • Shaw S, Mukhopadhyay B. Moving heat source response in a thermoelastic micro-elongated solid. J Eng Phys Thermophys. 2013;86(3):716–722.
  • Ailawalia P, Sachdeva S, Pathania D. Plane strain deformation in a thermo-elastic microelongated solid with internal heat source. Int J Appl Mech Eng. 2015;20(4):717–731.
  • Sachdeva S, Ailawalia P. Plane strain deformation in thermoelastic micro-elongated solid. Civil Environ Res. 2015;7(2):92–98.
  • Ailawalia P, Kumar S, Pathania D. Internal heat source in thermoelastic micro-elongated solid under Green Lindsay theory. J Theor Appl Mech. 2016;46(2):65–82.
  • Marin M, Vlase S, Paun M. Considerations on double porosity structure for micropolar bodies. AIP Adv. 2015;5(3):037113.
  • Gordon JP, Leite RCC, Moore RS, et al. Long-transient effects in lasers with inserted liquid samples. Bull Am Phys Soc. 1964;119:501–510.
  • Kreuzer LB. Ultralow gas concentration infrared absorption spectroscopy. J Appl Phys. 1971;42:2934–2943.
  • Tam AC. Ultrasensitive laser spectroscopy. New York: Academic Press; 1983, p. 1–108.
  • Tam AC. Applications of photoacoustic sensing techniques. Rev Mod Phys. 1986;58:381–431.
  • Tam AC. Photothermal investigations in solids and fluids. Boston (MA): Academic Press; 1989, p. 1–33.
  • Hobinya A, Abbas I. A GN model on photothermal interactions in a two-dimensions semiconductor half space. Results Phys. 2019;15:102588.
  • Todorović DM, Nikolić PM, Bojičić AI. Photoacoustic frequency transmission technique: electronic deformation mechanism in semiconductors. J Appl Phys. 1999;85:7716–7726.
  • Song YQ, Todorovic DM, Cretin B, et al. Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. Int J Solids Struct. 2010;47:1871–1875.
  • Lotfy K. The elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field. Can J Phys. 2016;94:400–409.
  • Lotfy K. A novel model of photothermal diffusion (PTD) for polymer nano-composite semiconducting of thin circular plate. Phys B. 2018;537:320–328.
  • Lotfy K, Kumar R, Hassan W, et al. Thermomagnetic effect with microtemperature in a semiconducting photothermal excitation medium. Appl Math Mech Engl Ed. 2018;39(6):783–796.
  • Lotfy K, Gabr M. Response of a semiconducting infinite medium under two temperature theory with photothermal excitation due to laser pulses. Opt Laser Technol. 2017;97:198–208.
  • Lotfy K. Photothermal waves for two temperature with a semiconducting medium under using a dual-phase-lag model and hydrostatic initial stress. Waves Random Complex Media. 2017;27(3):482–501.
  • Lotfy K. A novel model for photothermal excitation of variable thermal conductivity semiconductor elastic medium subjected to mechanical ramp type with two-temperature theory and magnetic field. Sci Rep. 2019;9:ID 3319.
  • Lotfy K. Effect of variable thermal conductivity during the photothermal diffusion process of semiconductor medium. Silicon. 2019;11:1863–1873.
  • Abbas I, Alzahrani F, Elaiwb A. A DPL model of photothermal interaction in a semiconductor material. Waves Random Complex Media. 2019;29:328–343.
  • Khamis A, El-Bary A, Lotfy K, et al. Photothermal excitation processes with refined multi dual phase-lags theory for semiconductor elastic medium. Alex Eng J. 2020;59(1):1–9.
  • Lotfy K, El-Bary A, El-Sharif A. Ramp-type heating micro-temperature for a rotator semiconducting material during photo-excited processes with magnetic field. Results Phys. 2020;19:103338.
  • Lotfy K. Effect of variable thermal conductivity and rotation of semiconductor elastic medium through two-temperature photothermal excitation. Waves Random Complex Media. 2021;31:372–388. doi:10.1080/17455030.2019.1588483.
  • Lotfy K, Tantawi R, Anwer N. Response of semiconductor medium of variable thermal conductivity due to laser pulses with two-temperature through photothermal process. Silicon. 2019;11:2719–2730.
  • Yasein M, Mabrouk N, Lotfy K, et al. The influence of variable thermal conductivity of semiconductor elastic medium during photothermal excitation subjected to thermal ramp type. Results Phys. 2019;15:102766.
  • Mondal S, Sur A. Photo-thermo-elastic wave propagation in an orthotropic semiconductor with a spherical cavity and memory responses. Waves Random Complex Media. 2021;31:1835–1858. doi:10.1080/17455030.2019.1705426.
  • Ezzat M. Hyperbolic thermal-plasma wave propagation in semiconductor of organic material. Waves Random Complex Media. 2022;32(1):334–358.
  • Ezzat M. A novel model of fractional thermal and plasma transfer within a non-metallic plate. Smart Struct Syst. 2021;27(1):73–87.
  • El-Sapa S. Effect of magnetic field on a microstretch fluid drop embedded in an unbounded another microstretch fluid. Eur J Mech B Fluids. 2021;85:169–180.
  • Ezzat M, El-Sapa S. State space approach to magnetohydrodynamic flow of perfectly conducting micropolar fluid with stretch. Int J Numer Meth Fluids. 2012;70:114–134.
  • Faltas MS, El-Sapa S. Hydrodynamic potentials for the creeping motion of a microstretch fluid. Int J Appl Comput Math. 2019;5(131):1–14.
  • Sherief H, Faltas MS, El-Sapa S. Slow motion of a slightly deformed spherical droplet in a microstretch fluid. Microsyst Technol. 2018;24(8):3245–3259.
  • Sherief H, Faltas MS, El-Sapa S. A general formula for the drag on a solid of revolution body at low Reynolds numbers in a microstretch fluid. Meccanica. 2017;52:2655–2664.
  • Hosseini SM, Zhang C. Plasma-affected photo-thermoelastic wave propagation in a semiconductor Love–Bishop nanorod using strain-gradient Moore–Gibson–Thompson theories. Thin-Walled Struct. 2022;179:109480.
  • Hosseini SM, Sladek J, Sladek V. Nonlocal coupled photo-thermoelasticity analysis in a semiconducting micro/nano beam resonator subjected to plasma shock loading: a Green-Naghdi-based analytical solution. Appl Math Model. 2020;88:631–651.
  • Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solid. 1967;15:299–309.
  • Green A, Lindsay K. Thermoelasticity. J Elast. 1972;2:1–7.
  • Biot M. Thermoelasticity and irreversible thermodynamics. J Appl Phys. 1956;27:240–253.
  • Deresiewicz H. Plane waves in a thermoelastic solid. J Acoust Soc Am. 1957;29:204–209.
  • Chadwick P, Snedon IN. Plane waves in an elastic solid conducting heat. J Mech Phys Solids. 1958;6:223–230.
  • Chadwick P. Thermoelasticity: the dynamic theory. In: Hill R, Snedon IN, editors. Progress in solid mechanics, vol. I. Amsterdam: North-Holland Publishing Company; 1960. p. 263–328.
  • Mandelis A, Nestoros M, Christofides C. Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt Eng. 1997;36(2):459–468.
  • Lotfy K, Abo-Dahab SM, Tantawy R, et al. Thermomechanical response model on a reflection photothermal diffusion waves (RPTD) for semiconductor medium. Silicon. 2020;12(1):199–209.
  • Lotfy K, Hassan W, El-Bary AA, et al. Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation . Results Phys. 2020;16:102877.
  • Liu J, Han M, Wang R, et al. Photothermal phenomenon: extended ideas for thermophysical properties characterization. J Appl Phys. 2022;131:065107. doi:10.1063/5.0082014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.