84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Supersonic flutter and free vibration features of functionally graded material nanobeams incorporating surface effects

, , , &
Received 24 Apr 2022, Accepted 28 Nov 2022, Published online: 12 Jan 2023

References

  • Hao R, Lu Z, Ding H, et al. A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dyn. 2022;108(2):941–958. DOI:10.1007/s11071-022-07243-7
  • Chen H, Liu M, Chen Y, et al. Nonlinear lamb wave for structural incipient defect detection with sequential probabilistic ratio test. Secur Commun Netw. 2022;2022:Article ID 9851533, 12 pages. DOI:10.1155/2022/9851533
  • Chen H, Li S. Collinear nonlinear mixed-frequency ultrasound with FEM and experimental method for structural health prognosis. Processes. 2022;10(4):656. DOI:10.3390/pr10040656
  • El-Shahat A, Sayed K. Simulation: early detection of brain vessels stroke by applying electromagnetic waves non-invasively. Int J Recent Innovation Trends Comput Commun. 2021;9(9):1–10. DOI:10.17762/ijritcc.v9i9.5487
  • Srinivas K, Srinivasulu T. Design and development of novel hybrid precoder for millimeter-wave MIMO system. Int J Commun Netw Inf Secur (IJCNIS). 2021;13(3). DOI:10.17762/ijcnis.v13i3.5096
  • Sanger AS, Prasad T, Singh Y, et al. Disruptive technology in digital notice board using flutter. Int J Recent Innovation Trends Comput Commun. 2021;9(5):52–55. DOI:10.17762/ijritcc.v9i5.5483
  • Rakshe S, Nimje SV, Panigrahi SK. Optimization of adhesively bonded spar-Wingskin joints of laminated FRP composites subjected to pull-off load: a critical review. Rev Adhes Adhes. 2021;8(1):29–46. DOI:10.7569/RAA.2020.097303
  • Liu C, Zhao Y, Wang Y, et al. Hybrid dynamic modeling and analysis of high-speed thin-rimmed gears. J Mech Des. 2021;143(12):123401. DOI:10.1115/1.4051137
  • Bai Y, Nardi DC, Zhou X, et al. A new comprehensive model of damage for flexural subassemblies prone to fatigue. Comput Struct. 2021;256:106639. DOI:10.1016/j.compstruc.2021.106639
  • Zhou X, Bai Y, Nardi DC, et al. Damage evolution modeling for steel structures subjected to combined high cycle fatigue and high-intensity dynamic loadings. Int J Struct Stab Dyn. 2022;22(03n04):2240012. DOI:10.1142/S0219455422400120
  • Sheng C, He G, Hu Z, et al. Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber. J Eng Fibers Fabr. 2021;16:1925832385. DOI:10.1177/15589250211052766
  • Ghasemvand M, Behjat B, Ebrahimi S. Experimental investigation of the effects of adhesive defects on the strength and creep behavior of single-lap adhesive joints at various temperatures. J Adhes. 2022:1–17. DOI:10.1080/00218464.2022.2095262
  • Patil S, Bhosale A, Dhepe V, et al. Impact energy absorption capability of polygonal cross-section thin-walled beams under lateral impact. Int J Innovative Res Sci Stud. 2021;4(4):205–214. DOI:10.53894/ijirss.v4i4.96
  • Brown P, Mazumder P. Current progress in mechanically durable water-repellent surfaces: a critical review. Rev Adhes Adhes. 2021;9(1):123–152.
  • Li C, Jiang T, Liu S, et al. Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates. Aerosp Sci Technol. 2022;124:107513.
  • Singh N, Gautam P. Comparative analysis of hypochlorite method on transgenic strain BY250. J Adv Zool. 2022;42(01):01–06. DOI:10.17762/jaz.v42i01.1
  • Dmytro S. The study of welding requirements during construction and installation of seismic-resistant steel structures. J Res Sci Eng Technol. 2020;8(2). DOI:10.24200/jrset.vol8iss2pp17-20
  • Hosseini M, Bahreman M, Jamalpoor A. Thermomechanical vibration analysis of FGM viscoelastic multi-nanoplate system incorporating the surface effects via nonlocal elasticity theory. Microsyst Technol. 2017;23(8):3041–3058.
  • Chen C, Shi Y, Zhang YS, et al. Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett. 2006;96(7):075505.
  • Eringen AC. Nonlocal polar elastic continua. Int J Eng Sci. 1972;10(1):1–16.
  • Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):4703–4710.
  • Mindlin RD. Micro-structure in linear elasticity. Arch Ration Mech Anal. 1964;16(1):51–78.
  • Mindlin RD. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct. 1965;1(4):417–438.
  • Fleck N, Hutchinson J. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids. 1993;41(12):1825–1857.
  • Toupin R. Elastic materials with couple-stresses. Arch Ration Mech Anal. 1962;11:385–414.
  • Yang F, Chong A, Lam DCC, et al. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731–2743.
  • Lam DC, Yang F, Chong A, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51(8):1477–1508.
  • Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.
  • Eltaher M, Emam SA, Mahmoud F. Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput. 2012;218(14):7406–7420.
  • Rahmani O, Pedram O. Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal timoshenko beam theory. Int J Eng Sci. 2014;77:55–70.
  • Ebrahimi F, Haghi P. Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory. Acta Mech Solida Sin. 2017;30(6):647–657.
  • Lu L, Guo X, Zhao J. A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int J Eng Sci. 2017;119:265–277.
  • Ruocco E, Zhang H, Wang C. Buckling and vibration analysis of nonlocal axially functionally graded nanobeams based on hencky-bar chain model. Appl Math Model. 2018;63:445–463.
  • Yang T, Tang Y, Li Q, et al. Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams. Compos Struct. 2018;204:313–319.
  • Bakhshi Khaniki H, Hosseini-Hashemi S, Nezamabadi A. Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method. Alexandria Eng J. 2018;57(3):1361–1368.
  • Tang H, Li L, Hu Y, et al. Vibration of nonlocal strain gradient beams incorporating Poisson’s ratio and thickness effects. Thin-Walled Struct. 2019;137:377–391.
  • Nazmul I, Devnath I. Exact analytical solutions for bending of bi-directional functionally graded nanobeams by the nonlocal beam theory using the Laplace transform. Forces Mech. 2020;1:100002.
  • Fang J, Zheng S, Xiao J, et al. Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aerosp Sci Technol. 2020;106:106146.
  • Zhang P, Qing H, Gao C-F. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos Struct. 2020;245:112362.
  • Gurtin ME, Murdoch AI. A continuum theory of elastic material surfaces. Arch Ration Mech Anal. 1975;57(4):291–323.
  • Gurtin ME, Ian Murdoch A. Surface stress in solids. Int J Solids Struct. 1978;14(6):431–440.
  • Sahmani S, Aghdam M, Bahrami M. On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Compos Struct. 2015;121:377–385.
  • Ghadiri M, Shafiei N, Akbarshahi A. Influence of thermal and surface effects on vibration behavior of nonlocal rotating timoshenko nanobeam. Appl Phys A. 2016;122(7):673.
  • Saffari S, Hashemian M, Toghraie D. Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects. Phys B. 2017;520:97–105.
  • Attia MA, Abdel Rahman AA. On vibrations of functionally graded viscoelastic nanobeams with surface effects. Int J Eng Sci. 2018;127:1–32.
  • Su G-Y, Li Y-X, Li X-Y, et al. Free and forced vibrations of nanowires on elastic substrates. Int J Mech Sci. 2018;138:62–73.
  • Foroutan S, Haghshenas A, Hashemian M, et al. Spatial buckling analysis of current-carrying nanowires in the presence of a longitudinal magnetic field accounting for both surface and nonlocal effects. Physica E. 2018;97:191–205.
  • Su J, Xiang Y, Ke L-L, et al. Surface effect on static bending of functionally graded porous nanobeams based on Reddy’s beam theory. Int J Struct Stab Dyn. 2019;19(06):1950062.
  • Hashemian M, Foroutan S, Toghraie D. Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects. Mech Mater. 2019;139:103209.
  • Sourani P, Hashemian M, Pirmoradian M, et al. A comparison of the bolotin and incremental harmonic balance methods in the dynamic stability analysis of an Euler–Bernoulli nanobeam based on the nonlocal strain gradient theory and surface effects. Mech Mater. 2020;145:103403.
  • Khaje khabaz M, Eftekhari SA, Hashemian M, et al. Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories. Physica A. 2020;546:123998.
  • Li X-F, Zou J, Jiang S-N, et al. Resonant frequency and flutter instability of a nanocantilever with the surface effects. Compos Struct. 2016;153:645–653.
  • Li X-F, Jiang S-N, Lee K. Surface effect on dynamic stability of microcantilevers on an elastic foundation under a subtangential follower force. Int J Mech Mater Des. 2018;14(1):91–104.
  • Xiao Q-X, Zou J, Lee KY, et al. Surface effects on flutter instability of nanorod under generalized follower force. Struct Eng Mech Int J. 2017;64(6):723–730.
  • Xiao Q-X, Li X-F. Flutter and divergence instability of rectangular plates under nonconservative forces considering surface elasticity. Int J Mech Sci. 2018;149:254–261.
  • Kiani K. Divergence and flutter instabilities of nanobeams in moving state accounting for surface and shear effects. Comput Math Appl. 2019;77(10):2764–2785.
  • Ghorbanpour Arani A, Soleymani T. Size-dependent vibration analysis of an axially moving sandwich beam with MR core and axially FGM faces layers in yawed supersonic airflow. Eur J Mech A/Solids. 2019;77:103792.
  • Ghorbanpour Arani A, Soleymani T. Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow. Int J Mech Sci. 2019;151:288–299.
  • Enayat S, Hashemian M, Toghraie D, et al. A comprehensive study for mechanical behavior of functionally graded porous nanobeams resting on elastic foundation. J Braz Soc Mech Sci Eng. 2020;42(8):1–24.
  • Lu L, Guo X, Zhao J. On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy. Int J Eng Sci. 2018;124:24–40.
  • Lu P, He LH, Lee HP, et al. Thin plate theory including surface effects. Int J Solids Struct. 2006;43(16):4631–4647.
  • Chang L, Rajapakse RKND. Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans Nanotechnol. 2010;9(4):422–431.
  • Eltaher MA, Alshorbagy AE, Mahmoud F. Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos Struct. 2013;99:193–201.
  • Sadd MH. Elasticity: theory, applications, and numerics. 3rd ed. Oxford: Academic Press; 2014.
  • Wang G-F, Feng X-Q. Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett. 2007;90(23):231904.
  • Ashley H, Zartarian G. Piston theory-a new aerodynamic tool for the aeroelastician. J Aeronaut Sci. 1956;23(12):1109–1118.
  • Shin W-H, Oh I-K, Han J-H, et al. Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments. J Sound Vib. 2006;296(1-2):99–116.
  • Ghorbanpour Arani A, Kiani F, Afshari H. Aeroelastic analysis of laminated FG-CNTRC cylindrical panels under yawed supersonic flow. Int J Appl Mech. 2019;11(6):1950052.
  • Li L, Li X, Hu Y. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. Int J Eng Sci. 2016;102:77–92.
  • Enayat S, Hashemian M, Toghraie D, et al. Bending, buckling and vibration analyses of FG porous nanobeams resting on Pasternak foundation incorporating surface effects. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik. 2020:e202000231. DOI:10.1002/zamm.202000231
  • Afshari H, Irani Rahaghi M. Whirling analysis of multi-span multi-stepped rotating shafts. J Braz Soc Mecha Sci Eng. 2018;40(9):1–17.
  • Bellman R, Kashef B, Casti J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys. 1972;10(1):40–52.
  • Bert CW, Malik M. Differential quadrature method in computational mechanics: a review. Appl Mech Rev. 1996;49(1):1–28.
  • Afshari H. Free vibration analysis of GNP-reinforced truncated conical shells with different boundary conditions. Aust J Mech Eng. 2022;20(5):1363–1378.
  • Afshari H. Effect of graphene nanoplatelet reinforcements on the dynamics of rotating truncated conical shells. J Braz Soc Mech Sci Eng. 2020;42(10):1–22.
  • Hosseini M, Ghorbanpour Arani A, Karamizadeh MR, et al. Aeroelastic analysis of cantilever non-symmetric FG sandwich plates under yawed supersonic flow. Wind Struct. 2019;29(6):457–469.
  • Fu Y, Zhang J. Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl Math Model. 2011;35(2):941–951.
  • Rao SS. Vibration of continuous systems. Hoboken (NJ): John Wiley & Sons; 2007.
  • Lu L, Guo X, Zhao J. Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory. Int J Eng Sci. 2017;116:12–24.
  • Sayyad AS, Ghugal YM. Analytical solutions for bending, buckling, and vibration analyses of exponential functionally graded higher order beams. Asian J Civil Eng. 2018;19(5):607–623.
  • Du H, Lim M, Lin R. Application of generalized differential quadrature method to structural problems. Int J Numer Methods Eng. 1994;37(11):1881–1896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.