112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Radiative heat and slip effects on blood-based hydrodynamic film flow of Maxwell/Oldroyd-B cross nanofluids: a bioapplication

, , &
Received 25 Jan 2022, Accepted 19 Dec 2022, Published online: 02 Jan 2023

References

  • Xu H, Pop I, You X. Flow and heat transfer in a nano-liquid film over an unsteady stretching surface. Int J Heat Mass Transf. 2013;60:646–652. doi:10.1016/j.ijheatmasstransfer.2013.01.046.
  • Ali R, Shahzad A, us Saher K, et al. The thin film flow of Al2O3 nanofluid particle over an unsteady stretching surface. Case Stud Therm Eng. 2022;29:101695. doi:10.1016/j.csite.2021.101695.
  • Zhang Y, Zhang M, Bai Y. Flow and heat transfer of an Oldroyd-B nanofluid thin film over an unsteady stretching sheet. J Mol Liq. 2016;220:665–670. doi:10.1016/j.molliq.2016.04.108.
  • Malvandi A, Heysiattalab S, Ganji DD. Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J Mol Liq. 2016;216:503–509. doi:10.1016/j.molliq.2016.01.030.
  • Aman S, Al-Mdallal Q, Khan I. Heat transfer and second order slip effect on MHD flow of fractional Maxwell fluid in a porous medium. J King Saud Univ – Sci. 2018. doi:10.1016/j.jksus.2018.07.007.
  • Noor NFM, Hashim I. Thermocapillarity and magnetic field effects in a thin liquid film on an unsteady stretching surface. Int J Heat Mass Transf. 2010;53:2044–2051. doi:10.1016/j.ijheatmasstransfer.2009.12.052.
  • Malvandi A, Ganji DD, Pop I. Laminar filmwise condensation of nanofluids over a vertical plate considering nanoparticles migration. Appl Therm Eng. 2016;100:979–986. doi:10.1016/j.applthermaleng.2016.02.061.
  • Ullah A, Shah Z, Kumam P, et al. Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation. Processes. 2019;7:262. doi:10.3390/pr7050262.
  • Andersson HI, Aarseth JB, Dandapat BS. Heat transfer in a liquid film on an unsteady stretching surface. Int J Heat Mass Transf. 2000;43:69–74. doi:10.1016/S0017-9310(99)00123-4.
  • Ali R, Shahzad A, us Saher K, et al. The thin film flow of Al2O3 nanofluid particle over an unsteady stretching surface. Case Stud Therm Eng. 2022;29:101695. doi:10.1016/j.csite.2021.101695.
  • Zhang Y, Zhang M, Bai Y. Flow and heat transfer of an Oldroyd-B nanofluid thin film over an unsteady stretching sheet. J Mol Liq. 2016;220:665–670. doi:10.1016/j.molliq.2016.04.108.
  • Farooq A, Ali R, Benim AC. Soret and Dufour effects on three dimensional Oldroyd-B fluid. Phys A Stat Mech Its Appl. 2018;503:345–354. doi:10.1016/j.physa.2018.02.204.
  • Hafeez A, Khan M, Ahmed J. Flow of Oldroyd-B fluid over a rotating disk with Cattaneo–Christov theory for heat and mass fluxes. Comput Methods Programs Biomed. 2020;191:105374. doi:10.1016/j.cmpb.2020.105374.
  • Rana S, Mehmood R, Bhatti MM. Bioconvection oblique motion of magnetized Oldroyd-B fluid through an elastic surface with suction/injection. Chinese J Phys. 2021;73:314–330. doi:10.1016/j.cjph.2021.07.013.
  • Khan M, Hafeez A, Ahmed J. Impacts of nonlinear radiation and activation energy on the axisymmetric rotating flow of Oldroyd-B fluid. Phys A Stat Mech Its Appl. 2021;580:124085. doi:10.1016/j.physa.2019.124085.
  • Sushila, Singh J, Kumar D, et al. A hybrid analytical algorithm for thin film flow problem occurring in non-Newtonian fluid mechanics. Ain Shams Eng J. 2021;12(2):2297–2302. doi:10.1016/j.asej.2020.09.006.
  • Sadiq MA. The impact of monocity and hybridity of nanostructures on the thermal performance of Maxwellian thin-film flow with memory and Darcy–Forchheirmer effects. J Therm Anal Calorim. 2021;143:1261–1272. doi:10.1007/s10973-020-09761-1.
  • Hayat T, Awais M, Safdar A, et al. Unsteady three dimensional flow of couple stress fluid over a stretching surface with chemical reaction. Nonlinear Anal Model Control. 2012;17:47–59.
  • Usman M, Hamid M, Zubair T, et al. Cu-AlO/Water hybrid nanofluid through a permeable surface in the presence of nonlinear radiation and variable thermal conductivity via LSM. Int J Heat Mass Transf. 2018;126:1347–1356. doi:10.1016/j.ijheatmasstransfer.2018.06.005.
  • Shehzad SA, Alsaedi A, Hayat T, et al. Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. PLoS One. 2013;8:e78240. doi:10.1371/journal.pone.0078240.
  • Kumar KA, Sandeep N, Sugunamma V. Effect of irregular heat source/sink on the radiative thin film flow of MHD hybrid ferrofluid. J Therm Anal Calorim. 2019;4; doi:10.1007/s10973-019-08628-4.
  • Lin Y, Zheng L, Chen G. Unsteady flow and heat transfer of pseudo-plastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation. Powder Technol. 2015;274:324–332. doi:10.1016/j.powtec.2015.01.039.
  • Pal D, Saha P. Analysis of unsteady magnetohydrodynamic radiative thin liquid film flow, heat and mass transfer over a stretching sheet with variable viscosity and thermal conductivity. Int J Comput Methods Eng Sci Mech. 2021;22(5):400–409. doi:10.1080/15502287.2021.1887406.
  • Khan Z, Jawad M, Bonyah E, et al. Magnetohydrodynamic thin film flow through a porous stretching sheet with the impact of thermal radiation and viscous dissipation. Math Probl Eng. 2022;2022:1–10. doi:10.1155/2022/1086847.
  • Tlili I, Samrat SP, Sandeep N, et al. Effect of nanoparticle shape on unsteady liquid film flow of MHD oldroyd-B ferrofluid. Ain Shams Eng J. 2021;12(1):935–941.
  • Sankad G, Ishwar M, Dhange M. Varying wall temperature and thermal radiation effects on MHD boundary layer liquid flow containing gyrotactic microorganisms. Partial Differ Equ Appl Math. 2021;4:100092.
  • Safdar M, Ijaz Khan M, Khan RA, et al. Analytic solutions for the MHD flow and heat transfer in a thin liquid film over an unsteady stretching surface with Lie symmetry and homotopy analysis method. Waves Random Complex Media. 2022. doi:10.1080/17455030.2022.2073402.
  • Shoaib M, Saqib SU, Zahoor Raja MA, et al. Intelligent computing Levenberg Marquardt technique for MHD hybrid nanofluid radiative-dissipative flow along stretched surface under influence of slip and convective conditions. Waves Random Complex Media. 2022. doi:10.1080/17455030.2022.2123572.
  • Girinath Reddy M, Sandeep N. Enhanced heat transfer in hydrodynamic non-newtonian film flows past an extending cylinder: a hydrogen energy application. Waves Random Complex Media. 2022. doi:10.1080/17455030.2022.2086322.
  • Patel HR. Thermal radiation effects on MHD flow with heat and mass transfer of micropolar fluid between two vertical walls. Int J Ambient Energy. 2021;42(11):1281–1296. doi:10.1080/01430750.2019.1594371.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.