280
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Wave propagation in a porous functionally graded curved viscoelastic nano-size beam

ORCID Icon, ORCID Icon &
Received 05 Oct 2021, Accepted 28 Dec 2022, Published online: 09 Jan 2023

References

  • Lee B, Staszewski W. Modelling of Lamb waves for damage detection in metallic structures: part I. Wave propagation. Smart Mater Struct. 2003;12(5):804–814. DOI:10.1088/0964-1726/12/5/018
  • Papanicolaou G. Wave propagation in complex media. Vol. 96. Berlin: Springer Science & Business Media; 2012.
  • Al-Furjan MSH, Habibi M, Ebrahimi F, et al. Wave dispersion characteristics of high-speed-rotating laminated nanocomposite cylindrical shells based on four continuum mechanics theories. Waves Random Complex Media. 2020; 32(4): 1599–1625. DOI:10.1080/17455030.2020.1831099
  • Almajid, A, Taya M, Takagi K, et al. Fabrication and modeling of porous FGM piezoelectric actuators. In Smart structures and materials 2002: smart structures and integrated systems. International Society for Optics and Photonics; 2002;4701:467–476. SPIE.
  • Wang YQ, Zu JW. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerosp Sci Technol. 2017;69:550–562. DOI:10.1016/j.ast.2017.07.023
  • Shahsavari D, Karami B. Assessment of Reuss, Tamura, and LRVE models for vibration analysis of functionally graded nanoplates. Arch Civil Mech Eng. 2022;22(2):1–13.
  • Miyamoto Y, et al. Functionally graded materials: design, processing and applications. Berlin: Springer Science & Business Media; 2013.
  • Hashemi HR, et al. Influence of imperfection on amplitude and resonance frequency of a reinforcement compositionally graded nanostructure. Waves Random Complex Media. 2019;31(6):1340–1366. DOI:10.1080/17455030.2019.1662968
  • Tahir SI, Tounsi A, Chikh A, et al. An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation. Waves Random Complex Media. 2021: 1–24. DOI:10.1080/17455030.2021.1942310
  • Abdou M, Othman MIA, Tantawi RS, et al. Exact solutions of generalized thermoelastic medium with double porosity under L–S theory. Indian J Phys. 2020;94(5):725–736. DOI:10.1007/s12648-019-01505-8.
  • Abdou M, Othman MIA, Tantawi RS, et al. Effect of magnetic field on generalized thermoelastic medium with double porosity structure under L–S theory. Indian J Phys. 2020;94(12):1993–2004. DOI:10.1007/s12648-019-01648-8.
  • Yahia SA, Atmane HA, Houari MSA, et al. Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech. 2015;53(6):1143–1165. DOI:10.12989/sem.2015.53.6.1143.
  • Shahsavari D, Li L, Karami B, et al. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation. Aerosp Sci Technol. 2018;72:134–149. DOI:10.1016/j.ast.2017.11.004.
  • Zhao J, Wang Q, Deng X, et al. A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams. Compos Part B Eng. 2019;165:155–166. DOI:10.1016/j.compositesb.2018.11.080.
  • Rezaiee-Pajand M, Rajabzadeh-Safaei N, Masoodi AR. An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams. Structures. 2020;28:1035–1049.
  • Asghari M, Ahmadian MT, Kahrobaiyan MH, et al. On the size-dependent behavior of functionally graded micro-beams. Mater Des. 2010;31(5):2324–2329.
  • Reddy J. Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids. 2011;59(11):2382–2399. DOI:10.1016/j.jmps.2011.06.008
  • Rabczuk T. Forced vibration analysis of functionally graded anisotropic nanoplates resting on Winkler/Pasternak-foundation. Comput Mater Continua. 2020;62(2):607–629. DOI:10.32604/cmc.2020.08032
  • Jena SK, Chakraverty S, Malikan M. Implementation of non-probabilistic methods for stability analysis of nonlocal beam with structural uncertainties. Eng Comput. 2020;37(4): 2957–2969.
  • Karami B, Shahsavari D, Li L, et al. Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field. Proc Inst Mech Eng Part C J Mech Eng Sci. 2019;233(6):2149–2169. DOI:10.1177/0954406218781680
  • Guo L, Xin X, Shahsavari D, et al. Dynamic response of porous E-FGM thick microplate resting on elastic foundation subjected to moving load with acceleration. Thin-Walled Struct. 2022;173:108981. DOI:10.1016/j.tws.2022.108981
  • Barati MR. On wave propagation in nanoporous materials. Int J Eng Sci. 2017;116:1–11. DOI:10.1016/j.ijengsci.2017.03.007
  • Lim C, Zhang G, Reddy J. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313. DOI:10.1016/j.jmps.2015.02.001
  • Bi R, Wang Z, Lori ES, et al. Wave propagation analysis of the higher-order nanopanel with laminated composite core and magneto-electro-elastic face sheets via nonlocal strain gradient theory. Waves Random Complex Media. 2021: 1–23. DOI:10.1080/17455030.2021.1938285
  • Biswas S. The propagation of plane waves in nonlocal visco-thermoelastic porous medium based on nonlocal strain gradient theory. Waves Random Complex Media. 2021: 1–32. DOI:10.1080/17455030.2021.1909780
  • Karami B, Janghorban M, Tounsi A. Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Struct. 2018;129:251–264. DOI:10.1016/j.tws.2018.02.025
  • Numanoğlu HM, Akgöz B, Civalek Ö. On dynamic analysis of nanorods. Int J Eng Sci. 2018;130:33–50. DOI:10.1016/j.ijengsci.2018.05.001
  • Jalaei M, Civalek Ö. On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int J Eng Sci. 2019;143:14–32. DOI:10.1016/j.ijengsci.2019.06.013
  • Norouzzadeh A, Ansari R, Rouhi H. An analytical study on wave propagation in functionally graded nano-beams/tubes based on the integral formulation of nonlocal elasticity. Waves Random Complex Media. 2020;30(3):562–580. DOI:10.1080/17455030.2018.1543979
  • Karami B, Shahsavari D, Janghorban M, et al. Wave dispersion of nanobeams incorporating stretching effect. Waves Random Complex Media. 2021;31(4):639–659. DOI:10.1080/17455030.2019.1607623
  • Karami B, Janghorban M, Shahsavari D, et al. Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes. Molecules. 2019;24(15):2750. DOI:10.3390/molecules24152750
  • Wang YQ, Zu JW. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates. Smart Mater Struct. 2017;26(10):105014. DOI:10.1088/1361-665X/aa8429
  • Jalaei MH, Thai H-T. Dynamic stability of viscoelastic porous FG nanoplate under longitudinal magnetic field via a nonlocal strain gradient quasi-3D theory. Compos Part B Eng. 2019;175:107164. DOI:10.1016/j.compositesb.2019.107164
  • Dastjerdi S, Malikan M, Dimitri R, et al. Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Compos Struct. 2021;255:112925. DOI:10.1016/j.compstruct.2020.112925
  • Karami B, Janghorban M, Tounsi A. Galerkin’s approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions. Eng Comput. 2019;35(4):1297–1316. DOI:10.1007/s00366-018-0664-9
  • Shahsavari D, Karami B, Janghorban M. Size-dependent vibration analysis of laminated composite plates. Adv Nano Res. 2019;7(5):337–349.
  • Ebrahimi F, Habibi M, Safarpour H. On modeling of wave propagation in a thermally affected GNP-reinforced imperfect nanocomposite shell. Eng Comput. 2019;35(4):1375–1389. DOI:10.1007/s00366-018-0669-4
  • Salehipour H, Shahsavar A, Civalek O. Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges. Compos Struct. 2019;221:110842. DOI:10.1016/j.compstruct.2019.04.014
  • Ebrahimi F, Mohammadi K, Barouti MM, et al. Wave propagation analysis of a spinning porous graphene nanoplatelet-reinforced nanoshell. Waves Random Complex Media. 2019;31(6): 1655–1681. DOI:10.1080/17455030.2019.1694729
  • Al-Furjan M, Habibi MSH, Jung D, et al. A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel. Eng Comput. 2022;38: 1679–1696. DOI:10.1007/s00366-020-01130-8
  • Zheng Y, Karami B, Shahsavari D. On the vibration dynamics of heterogeneous panels under arbitrary boundary conditions. Int J Eng Sci. 2022;178:103727. DOI:10.1016/j.ijengsci.2022.103727
  • Karami B, Janghorban M. On the mechanics of functionally graded nanoshells. Int J Eng Sci. 2020;153:103309. DOI:10.1016/j.ijengsci.2020.103309
  • Karami B, Janghorban M, Fahham H. Forced vibration analysis of anisotropic curved panels via a quasi-3D model in orthogonal curvilinear coordinate. Thin-Walled Struct. 2022;175:109254. DOI:10.1016/j.tws.2022.109254
  • Zhang S, Wang M, Chen C, et al. Wave propagation in carbon nanotube-reinforced nanocomposite doubly-curved shells resting on a viscoelastic foundation. Waves Random Complex Media. 2022: 1–24. DOI:10.1080/17455030.2022.2058710
  • Karami B, Janghorban M, Fahham H. On the stress analysis of anisotropic curved panels. Int J Eng Sci. 2022;172:103625. DOI:10.1016/j.ijengsci.2022.103625
  • Saxena P, Hossain M, Steinmann P. Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers. Proc R Soc A Math Phys Eng Sci. 2014;470(2166):20140082. DOI:10.1098/rspa.2014.0082
  • Saxena P, Hossain M, Steinmann P. Mathematical modelling of finite strain magneto-viscoelastic deformations. PAMM. 2013;13(1):163–164. DOI:10.1002/pamm.201310077
  • Lei Y, Adhikari S, Friswell M. Vibration of nonlocal Kelvin–Voigt viscoelastic damped Timoshenko beams. Int J Eng Sci. 2013;66-67:1–13.
  • Pavlović I, Ćirić I, Karličić D, et al. Dynamic stability of nonlocal Voigt–Kelvin viscoelastic Rayleigh beams. Appl Math Model. 2015;39(22):6941–6950. DOI:10.1016/j.apm.2015.02.044
  • Shahsavari D, Karami B, Janghorban M, et al. Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment. Mater Res Express. 2017;4(8):085013. DOI:10.1088/2053-1591/aa7d89
  • Shahsavari D, Karami B, Li L. Damped vibration of a graphene sheet using a higher-order nonlocal strain-gradient Kirchhoff plate model. Comptes Rendus Mécanique. 2018;346(12):1216–1232. DOI:10.1016/j.crme.2018.08.011
  • Al-Furjan M, Oyarhossein MA, Habibi M, et al. On the wave propagation of the multi-scale hybrid nanocomposite doubly curved viscoelastic panel. Compos Struct. 2021;255:112947. DOI:10.1016/j.compstruct.2020.112947
  • Liu G, Wu S, Shahsavari D, et al. Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur J Mech-A/Solids. 2022;95:104649.
  • Song J, Karami B, Shahsavari D, et al. Wave dispersion characteristics of graphene reinforced nanocomposite curved viscoelastic panels. Compos Struct. 2021;277:114648.
  • Ghayesh MH. Dynamics of functionally graded viscoelastic microbeams. Int J Eng Sci. 2018;124:115–131. DOI:10.1016/j.ijengsci.2017.11.004
  • Ansari R, Faraji Oskouie M, Sadeghi F, et al. Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory. Physica E. 2015;74:318–327. DOI:10.1016/j.physe.2015.07.013
  • Loghman E, Kamali A, Bakhtiari-Nejad F, et al. Nonlinear free and forced vibrations of fractional modeled viscoelastic FGM micro-beam. Appl Math Model. 2021;92:297–314. DOI:10.1016/j.apm.2020.11.011
  • Hajianmaleki M, Qatu MS. Vibrations of straight and curved composite beams: a review. Compos Struct. 2013;100:218–232. DOI:10.1016/j.compstruct.2013.01.001
  • Anirudh B, Ganapathi M, Anant C, et al. A comprehensive analysis of porous graphene-reinforced curved beams by finite element approach using higher-order structural theory: bending, vibration and buckling. Compos Struct. 2019;222:110899. DOI:10.1016/j.compstruct.2019.110899
  • Talebizadehsardari P, Eyvazian A, Asmael M, et al. Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin-Walled Struct. 2020;157:107139. DOI:10.1016/j.tws.2020.107139
  • Karami B, Shahsavari D, Janghorban M, et al. Influence of homogenization schemes on vibration of functionally graded curved microbeams. Compos Struct. 2019;216:67–79. DOI:10.1016/j.compstruct.2019.02.089
  • She G-L, Ren Y-R, Yan K-M. On snap-buckling of porous FG curved nanobeams. Acta Astronaut. 2019;161:475–484. DOI:10.1016/j.actaastro.2019.04.010
  • She G-L, Liu H-B, Karami B. On resonance behavior of porous FG curved nanobeams. Steel Compos. Struct. 2020;36(2):179–186.
  • Xu X, Karami B, Shahsavari D. Time-dependent behavior of porous curved nanobeam. Int J Eng Sci. 2021;160:103455. DOI:10.1016/j.ijengsci.2021.103455
  • Drozdov AD. Viscoelastic structures: mechanics of growth and aging. Academic Press; 1998.
  • Kim J, Żur KK, Reddy J. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos Struct. 2019;209:879–888. DOI:10.1016/j.compstruct.2018.11.023
  • Polit O, d’Ottavio M, Vidal P. High-order plate finite elements for smart structure analysis. Compos Struct. 2016;151:81–90. DOI:10.1016/j.compstruct.2016.01.092
  • Ansari R, Oskouie MF, Gholami R. Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory. Physica E. 2016;75:266–271. DOI:10.1016/j.physe.2015.09.022
  • Ganapathi M, Polit O. Dynamic characteristics of curved nanobeams using nonlocal higher-order curved beam theory. Physica E. 2017;91:190–202. DOI:10.1016/j.physe.2017.04.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.