129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermodynamic analysis for peristaltic flow of Carreau-Yasuda magneto nanofluid through a porous medium

, ORCID Icon &
Received 03 Nov 2021, Accepted 23 Jan 2023, Published online: 06 Feb 2023

References

  • Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Fluids Eng Div. 1995;231:99–105.
  • Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids. Int J Therm Sci. 2007;46:1–9.
  • Hajipour M, Dehkordi AM. Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium. Int J Therm Sci. 2012;55:103–113.
  • Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water-aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2015;7:1–11.
  • Afrouzi HH, Hosseini M, Toghraie D, et al. Thermo-hydraulic characteristics investigation of nanofluid heat transfer in a microchannel with super hydrophobic surfaces under non-uniform magnetic field using Incompressible Preconditioned Lattice Boltzmann Method (IPLBM), ). Physica A. Stat Mech Appl. 2020;553:Article 124669.
  • Qin Y. Nanofluid heat transfer within a pipe equipped with external device. Int Commun Heat Mass Transfer. 2021;127:Article 105487.
  • Nada EA, Pop I, Mahian O. A dissipative particle dynamics two-component nanofluid heat transfer model, application to natural convection. Int J Heat Mass Transfer. 2019;133:1086–1098.
  • Afzal A, Nawfal I, Mahbubul IM, et al. An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim. 2019;135:393–418.
  • Yashawantha KM, Asif A, Babu GR, et al. Rheological behavior and thermal conductivity of graphite–ethylene glycol nanofluid. J Test Eval. 2019;49:2906–2927.
  • Dhairiyasamy R, Saleh B, Govindasamy M, et al. Effect of particle size on thermophysical and heat transfer properties of Ag nanofluid in a radiator-an experimental investigation. Inorg Nano-Metal Chem. 2021: 1–5. doi:10.1080/24701556.2021.1980041.
  • Chandrasekar M, Suresh S, Chandra Bose A. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34:210–216.
  • Żyła G, Witek A, Gizowska M. Rheological profile of boron nitride-ethylene glycol nanofluids. J Appl Phys. 2015;117:Article 014302.
  • Mousavi SM, Esmaeilzadeh F, Wang XP. A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2 aqueous dual hybrid nanofluid. J Mol Liq. 2019;282:323–339.
  • Yan SR, Kalbasi R, Nguyen Q, et al. Rheological behavior of hybrid MWCNTs-TiO2/EG nanofluid: A comprehensive modeling and experimental study. J Mol Liq. 2020;308:Article 113058.
  • Bakak A, Lotfi M, Heyd R, et al. Viscosity and rheological properties of graphene nanopowders nanofluids. Entropy. 2021;23:979. doi:10.3390/e23080979.
  • Latham TW. Fluid motion in a peristaltic pump [master’s thesis]. Cambridge: Massachusetts Institute of Technology; 1966.
  • Shapiro H, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelength at low Reynolds number. J Fluid Mech. 1969;37:799–825.
  • Reddy MG, Reddy KV. Influence of Joule heating on MHD peristaltic flow of a nanofluid with compliant walls. Procedia Eng. 2015;127:1002–1009.
  • Akbar NS, Tripathi D, Bég OA. Modeling nanoparticle geometry effects on peristaltic pumping of medical magnetohydrodynamic nanofluids with heat transfer. J Mech Med Biol. 2016;16:Article 1650088.
  • Bhatti MM, Sheikholeslami M, Zeeshan A. Entropy analysis on electro-kinetically modulated peristaltic propulsion of magnetized nanofluid flow through a microchannel. Entropy. 2017;19:481. doi:10.3390/e19090481.
  • Abdelsalam SI, Bhatti MM. The study of non-Newtonian nanofluid with Hall and ion slip effects on peristaltically induced motion in a non-uniform channel. RSC Adv. 2018;8:7904–7915.
  • Hayat T, Ayub S, Alsaedi A, et al. Numerical simulation for peristaltic activity of sutterby fluid with modified Darcy’s law. Results Phys. 2017;7:762–768.
  • Mosayebidorcheh S, Hatami M. Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (part I: straight channel). Int J Heat Mass Transfer. 2018;126:790–799.
  • Akbar Y, Iqbal J, Hussain M, et al. Peristaltic transportation of Carreau–Yasuda magneto nanofluid embedded in a porous medium with heat and mass transfer. Waves Random Complex Media. 2022: 1–21. doi:10.1080/17455030.2022.2036388.
  • Akbar Y, Alotaibi H. Electroosmosis optimized thermal model for peristaltic transportation of thermally radiative magnetized liquid with nonlinear convection. Entropy. 2022;24:530. doi:10.3390/e24040530.
  • Akbar Y, Alotaibi H, Javed U, et al. Electroosmosis modulated peristaltic transport of Carreau magneto-nanofluid with modified Darcy’s law. Waves Random Complex Media. 2022: 1–22. doi:10.1080/17455030.2022.2058715.
  • Jing D, Hatami M. Peristaltic Carreau-Yasuda nanofluid flow and mixed heat transfer analysis in an asymmetric vertical and tapered wavy wall channel. Rep Mech Eng. 2020;1:128–140.
  • Alsaedi A, Nisar Z, Hayat T, et al. Analysis of mixed convection and Hall current for MHD peristaltic transport of nanofluid with compliant wall. Int Commun Heat Mass Transfer. 2021;121:Article 105121.
  • Akbar NS. Entropy generation analysis for a CNT suspension nanofluid in plumb ducts with peristalsis. Entropy. 2015;17:1411–1424.
  • Rashidi MM, Bhatti MM, Abbas MA, et al. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;18:117. doi:10.3390/e18040117.
  • Hayat T, Rafiq M, Ahmad B, et al. Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame. Int J Heat Mass Transfer. 2017;108:1775–1786.
  • Saleem N. Entropy production in peristaltic flow of a space dependent viscosity fluid in asymmetric channel. Therm Sci. 2018;22:2909–2918.
  • Abbasi FM, Shanakhat I, Shehzad SA. Analysis of entropy generation in peristaltic nanofluid flow with Ohmic heating and Hall current. Phys Scr. 2019;94:Article 025001.
  • Zahid UM, Akbar Y, Abbasi FM. Entropy generation analysis for peristaltically driven flow of hybrid nanofluid. Chin J Phys. 2020;67:330–348.
  • Akbar Y, Abbasi FM. Irreversibility analysis of nanofluid flow induced by peristaltic waves in the presence of concentration-dependent viscosity. Heat Transfer. 2021;50:5467–5484.
  • Gul M, Abbasi FM, Shehzad SA, et al. Entropy generation for peristaltic motion of Carreau’s fluid with mixture of ethylene glycol and boron-nitride nanoparticles. Phys Scr. 2020;95:Article 035212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.