116
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Assessment of transient thermal distribution in a moving porous plate with temperature-dependent internal heat generation using Levenberg–Marquardt backpropagation neural network

& ORCID Icon
Received 12 Sep 2021, Accepted 27 Mar 2023, Published online: 05 Apr 2023

References

  • Jamshed W, Shahzad F, Safdar R, et al. Implementing renewable solar energy in presence of Maxwell nanofluid in parabolic trough solar collector: a computational study. Waves Random Complex Media. 2021:1–32. doi:10.1080/17455030.2021.1989518.
  • Saeed A, Bilal M, Gul T, et al. Fractional order stagnation point flow of the hybrid nanofluid towards a stretching sheet. Sci Rep. 2021;11(1):Art. no. 1:20429. doi:10.1038/s41598-021-00004-3.
  • Madhukesh J, Alhadhrami A, Naveen Kumar R, et al. Physical insights into the heat and mass transfer in Casson hybrid nanofluid flow induced by a Riga plate with thermophoretic particle deposition. Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 2021;09544089211039305. doi:10.1177/09544089211039305.
  • Khashi’ie NS, Zokri SM, Kasim ARM, et al. Insight into hybrid nanofluid induced by a Riga plate: investigation on second grade fluid model. Waves Random Complex Media. 2022;1–18. doi:10.1080/17455030.2022.2118390.
  • Shah SAA, Ahammad NA, Din EMTE, et al. Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet. Nanomaterials. 2022;12(13):Art. no. 13:2174. doi:10.3390/nano12132174.
  • Aziz A, Aziz A, Ullah I, et al. An optimal analysis for 3D swirling flow of Jeffrey nanoliquid with Arrhenius activation energy and heat generation/absorption effects. Waves Random Complex Media. 2022;0(0):1–30. doi:10.1080/17455030.2022.2097748.
  • Shah SAA, Awan AU. Significance of magnetized Darcy-Forchheimer stratified rotating Williamson hybrid nanofluid flow: a case of 3D sheet. Int Commun Heat Mass Transfer. 2022;136:106214. doi:10.1016/j.icheatmasstransfer.2022.106214.
  • Khashi’ie NS, Arifin NM, Pop I. Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. Alexandria Eng J. 2022;61(3):1938–1945. doi:10.1016/j.aej.2021.07.032.
  • Adeyeye O, Aldalbahi A, Omar Z, et al. Investigation of a hyperbolic annular fin with temperature dependent thermal conductivity by two step third derivative block method (TSTDBM). Microsyst Technol. 2021;27(5):2063–2074. doi:10.1007/s00542-020-05015-0.
  • Turkyilmazoglu M. Thermal performance of optimum exponential fin profiles subjected to a temperature jump. Int J Numer Methods Heat Fluid Flow. 2021;32(3):1002–1011. doi:10.1108/HFF-02-2021-0132.
  • Fallah Najafabadi M, Talebi Rostami H, Hosseinzadeh K, et al. Thermal analysis of a moving fin using the radial basis function approximation. Heat Transfer. 2021;50(8):7553–7567. doi:10.1002/htj.22242.
  • Talbi N, Kezzar M, Malaver M, et al. Increment of heat transfer by graphene-oxide and molybdenum-disulfide nanoparticles in ethylene glycol solution as working nanofluid in penetrable moveable longitudinal fin. Waves Random Complex Media. 2022;0(0):1–23. doi:10.1080/17455030.2022.2026527.
  • Varun Kumar RS, Sowmya G, Prasannakumara BC. Significance of non-fourier heat conduction in the thermal analysis of a wet semi-spherical fin with internal heat generation. Waves Random Complex Media. 2022;1–17. doi:10.1080/17455030.2022.2134601.
  • Turkyilmazoglu M. Prescribed temperature profiles of longitudinal convective-radiative fins subject to axially distributed thermal conductivities. Arab J Sci Eng. 2022;47:15689–15703. doi:10.1007/s13369-022-06710-y.
  • Varun Kumar R, Sowmya G, Jagadeesha KC, et al. Inspection of thermal distribution through a porous fin of triangular profile with internal heat generation and electromagnetic field. Waves Random Complex Media. 2022;0(0):1–21. doi:10.1080/17455030.2022.2131935.
  • Jawairia S, Raza J. Optimization of heat transfer rate in a moving porous fin under radiation and natural convection by response surface methodology: sensitivity analysis. Chem. Eng. J. Adv. 2022;11:100304. doi:10.1016/j.ceja.2022.100304.
  • Din ZU, Ali A, Khan ZA, et al. Heat transfer analysis: convective-radiative moving exponential porous fins with internal heat generation. Math Biosci Eng. 2022;19(11):11491–11511. doi:10.3934/mbe.2022535.
  • Varun Kumar RS, Sowmya G. A novel analysis for heat transfer enhancement in a trapezoidal fin wetted by MoS2 + Fe3O4 + NiZnFe2O4- methanol based ternary hybrid nanofluid. Waves Random Complex Media. 2022;0(0):1–19. doi:10.1080/17455030.2022.2134605.
  • Saedodin S, Barforoush MSM. Comprehensive analytical study for convective–radiative continuously moving plates with multiple non-linearities. Energy Convers Manage. 2014;81:160–168. doi:10.1016/j.enconman.2014.02.020.
  • Sun Y-S, Ma J, Li B-W. Spectral collocation method for convective–radiative transfer of a moving rod with variable thermal conductivity. Int J Therm Sci. 2015;90:187–196. doi:10.1016/j.ijthermalsci.2014.12.019.
  • Ma J, Sun Y, Li B. Spectral collocation method for transient thermal analysis of coupled conductive, convective and radiative heat transfer in the moving plate with temperature dependent properties and heat generation. Int J Heat Mass Transfer. 2017;114:469–482. doi:10.1016/j.ijheatmasstransfer.2017.06.082.
  • Varun Kumar RS, Saleh B, Sowmya G, et al. Exploration of transient heat transfer through a moving plate with exponentially temperature-dependent thermal properties. Waves Random Complex Media. 2022;1–19. doi:10.1080/17455030.2022.2056256.
  • Chen H, Ma J, Liu H. Least square spectral collocation method for nonlinear heat transfer in moving porous plate with convective and radiative boundary conditions. Int J Therm Sci. 2018;132:335–343. doi:10.1016/j.ijthermalsci.2018.06.020.
  • Das R, Kundu B. Prediction of heat-generation and electromagnetic parameters from temperature response in porous fins. J Thermophys Heat Transfer. 2021;35(4):761–769. doi:10.2514/1.T6224.
  • Varun Kumar RS, Sowmya G, Jayaprakash MC, et al. Assessment of thermal distribution through an inclined radiative-convective porous fin of concave profile using generalized residual power series method (GRPSM). Sci Rep. 2022;12(1):Art. no. 1:13275. doi:10.1038/s41598-022-15396-z.
  • Ranjan R, Mallick A, Prasad DK. Closed form solution for a conductive–convective–radiative annular fin with multiple nonlinearities and its inverse analysis. Heat Mass Transfer. 2017;53(3):1037–1049. doi:10.1007/s00231-016-1872-8.
  • Das R, Kundu B. Estimation of internal heat generation in a fin involving all modes of heat transfer using golden section search method. Heat Transfer Eng. 2018;39(1):58–71. doi:10.1080/01457632.2017.1280291.
  • Ranjan R, Mallick A, Jana P. Thermoelastic study of a functionally graded annular fin with variable thermal parameters using semiexact solution. J Therm Stresses. 2019;42(10):1272–1297. doi:10.1080/01495739.2019.1646617.
  • Hoseinzadeh S, Moafi A, Shirkhani A, et al. Numerical validation heat transfer of rectangular cross-section porous fins. J Thermophys Heat Transfer. 2019;33(3):698–704. doi:10.2514/1.T5583.
  • Weera W, Varun Kumar RS, Sowmya G, et al. Convective-radiative thermal investigation of a porous dovetail fin using spectral collocation method. Ain Shams Eng. J. 2023;14(1):101811. doi:10.1016/j.asej.2022.101811.
  • Sowmya G, Lashin MMA, Ijaz Khan M, et al. Significance of convection and internal heat generation on the thermal distribution of a porous dovetail fin with radiative heat transfer by spectral collocation method. Micromachines (Basel). 2022;13(8):Art. no. 8:1336. doi:10.3390/mi13081336.
  • Ahmad I, Zahid H, Ahmad F, et al. Design of computational intelligent procedure for thermal analysis of porous fin model. Chin J Phys. 2019;59:641–655. doi:10.1016/j.cjph.2019.04.015.
  • Shah Z, Asif Zahoor Raja M, Chu Y-M, et al. Design of neural network based intelligent computing for neumerical treatment of unsteady 3D flow of Eyring-Powell magneto-nanofluidic model. J. Mater. Res. Technol. 2020;9(6):14372–14387. doi:10.1016/j.jmrt.2020.09.098.
  • Shafiq A, Çolak AB, Sindhu TN, et al. Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling. Sci Rep. 2021;11(1):Art. no. 1:14509. doi:10.1038/s41598-021-93790-9.
  • Ilyas H, Ahmad I, Raja MAZ, et al. Neuro-intelligent mappings of hybrid hydro-nanofluid Al2O3–Cu–H2O model in porous medium over rotating disk with viscous dissolution and Joule heating. Int J Hydrogen Energy. 2021;46(55):28298–28326. doi:10.1016/j.ijhydene.2021.06.065.
  • Khan NA, Khalaf OI, Romero CAT, et al. Application of Euler neural networks with soft computing paradigm to solve nonlinear problems arising in heat transfer. Entropy . 2021;23(8):Art. no. 8:1053. doi:10.3390/e23081053.
  • Darvishvand L, Safari V, Kamkari B, et al. Machine learning-based prediction of transient latent heat thermal storage in finned enclosures using group method of data handling approach: A numerical simulation. Eng Anal Boundary Elem. 2022;143:61–77. doi:10.1016/j.enganabound.2022.06.009.
  • Shoaib M, Naz I, Raja MAZ, et al. A design of an intelligent computing networks to study impacts of porous dissipation and slip for boundary layer flow along Darcy-Brinkman porous media. Int Commun Heat Mass Transfer. 2022;135:106127. doi:10.1016/j.icheatmasstransfer.2022.106127.
  • Shafiq A, Çolak AB, Sindhu TN. Modeling of Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with artificial neural network. Arab J Sci Eng. 2022;48:2807–2820. doi:10.1007/s13369-022-06945-9.
  • Shafiq A, Çolak AB, Sindhu TN. Optimization of the numerical treatment of the Darcy–Forchheimer flow of Ree–Eyring fluid with chemical reaction by using artificial neural networks. Int J Numer Methods Fluids.2023;95(1):176-192. doi:10.1002/fld.5147.
  • Sowmya G, Sarris IE, Vishalakshi CS, et al. Analysis of transient thermal distribution in a convective–radiative moving rod using two-dimensional differential transform method with multivariate pade approximant. Symmetry (Basel). 2021;13(10):Art. no. 10:1793. doi:10.3390/sym13101793.
  • Sowmya G, Kumar KT, Srilatha P, et al. Performance analysis of a longitudinal fin under the influence of magnetic field using differential transform method with pade approximant. ZAMM.2022;102(11): e202100464. doi:10.1002/zamm.202100464.
  • Aziz A, Bouaziz MN. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers Manage. 2011;52(8):2876–2882. doi:10.1016/j.enconman.2011.04.003.
  • Goud JS, Srilatha P, Varun Kumar RS, et al. Role of ternary hybrid nanofluid in the thermal distribution of a dovetail fin with the internal generation of heat. Case Stud. Therm. Eng. 2022;35:102113. doi:10.1016/j.csite.2022.102113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.