66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Entropy optimization of non-Newtonian hybrid nanofluid EMHD flow by numerical and Levenberg–Marquardt backpropagation approach over a rotating disk

, &
Received 28 Mar 2022, Accepted 02 May 2023, Published online: 20 Jun 2023

References

  • Das S, Barman B, Jana RN, et al. Hall and ion slip currents’ impact on electromagnetic blood flow conveying hybrid nanoparticles through an endoscope with peristaltic waves. BioNanoScience. 2021;11:770–792. doi:10.1007/s12668-021-00873-y
  • Sahoo A, Nandkeolyar R. Entropy generation and dissipative heat transfer analysis of mixed convective hydromagnetic flow of a Casson nanofluid with thermal radiation and Hall current. Sci Reports. 2021;11:1–31.
  • Shaheen N, Ramzan M, Alaoui MK. Impact of Hall current on a 3D Casson nanofluid flow past a rotating deformable disk with variable characteristics. Arab J Sci Eng. 2021;46:12653–12666. doi:10.1007/s13369-021-06060-1
  • Rashidi S, Esfahani JA, Maskaniyan M. Applications of magnetohydrodynamics in biological systems – a review on the numerical studies. J Magn Magn Mater. 2017;439:358–372. doi:10.1016/j.jmmm.2017.05.014
  • Shah Z, Islam S, Ayaz H, et al. Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates with effects of Hall current. J Heat Transfer. 2019;141. doi:10.1115/1.4040415
  • Acharya N, Bag R, Kundu PK. Influence of Hall current on radiative nanofluid flow over a spinning disk: a hybrid approach. Phys E Low-Dimensional Syst Nanostructures. 2019;111:103–112. doi:10.1016/j.physe.2019.03.006
  • Khan A, Shah RA, Alam MK, et al. Computational investigation of an unsteady non-Newtonian and non-isothermal fluid between coaxial contracting channels: a PCM approach. Results Phys. 2021;28:104570. doi:10.1016/j.rinp.2021.104570
  • Rehman K U, Malik MY, Khan WA, et al. Numerical solution of non-Newtonian fluid flow due to rotatory rigid disk. Symmetry (Basel). 2019;11:699. doi:10.3390/sym11050699
  • Zhao TH, Khan MI, Chu YM. Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-newtonian fluid between two rotating disks. Math Methods Appl Sci. 2023;46:3012–3030.
  • Agarwal R, Kumar Mishra P. Analytical solution of the MHD forced flow and heat transfer of a non-Newtonian visco-inelastic fluid between two infinite rotating disks. Mater Today Proc. 2021;46:10153–10163. doi:10.1016/j.matpr.2020.10.632
  • Ramesh K, Ojjela O, Nareshkumar N. Second law analysis in radiative mixed convective squeezing flow of Casson fluid between parallel disks with Soret and Dufour effects. Heat Transf Res. 2019;48:1483–1500. doi:10.1002/htj.21442
  • Bhaskar K, Sharma K. Unsteady MHD squeezing viscous Casson fluid flow in upright channel with cross-diffusion and thermal radiactive effects. Indian J Phys. 2020;95:1453–1467. doi:10.1007/s12648-020-01805-4
  • Bala Anki Reddy P. MHD boundary layer slip flow of a Casson fluid over an exponentially stretching surface in the presence of thermal radiation and chemical reaction. J Nav Archit Mar Eng. 2016;13:165–177. doi:10.3329/jname.v13i2.23537
  • Pramanik S. Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation. Ain Shams Eng J. 2014;5:205–212. doi:10.1016/j.asej.2013.05.003
  • Hayat T, Khan SA, Momani S. Finite difference analysis for entropy optimized flow of Casson fluid with thermo diffusion and diffusion-thermo effects. Int J Hydrogen Energy. 2022;47:8048–8059.
  • Khan MR, Al-Johani AS, Elsiddieg AMA, et al. The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface. Int Commun Heat Mass Transf. 2022;130:105832. doi:10.1016/j.icheatmasstransfer.2021.105832
  • Aneja M, Chandra A, Sharma S. Natural convection in a partially heated porous cavity to Casson fluid. Int Commun Heat Mass Transf. 2020;114:104555. doi:10.1016/j.icheatmasstransfer.2020.104555
  • Ilyas H, Ahmad I, Raja MAZ, et al. Neuro-intelligent mappings of hybrid hydro-nanofluid Al2O3–Cu–H2O model in porous medium over rotating disk with viscous dissolution and joule heating. Int J Hydrogen Energy. 2021;46:28298–28326. doi:10.1016/j.ijhydene.2021.06.065
  • Moayedi H, Mehrabi M, Mosallanezhad M, et al. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng with Comput. 2018;35:967–984. doi:10.1007/s00366-018-0644-0
  • Rashad A, Kamel S, Jurado F, et al. ANN-Based STATCOM tuning for performance enhancement of combined wind farms. Electr Power Components Syst. 2019;47:10–26. doi:10.1080/15325008.2019.1570052
  • Usman AH, Khan NS, Humphries UW, et al. Development of dynamic model and analytical analysis for the diffusion of different species in non-Newtonian nanofluid swirling flow. Front Phys. 2021;8. doi:10.3389/fphy.2020.616790
  • Ali A, Bukhari Z, Umar M, et al. Cu and cu-swcnt nanoparticles’ suspension in pulsatile Casson fluid flow via Darcy–Forchheimer porous channel with compliant walls: a prospective model for blood flow in stenosed arteries. Int J Mol Sci. 2021;22:616790.
  • Aman S, Zokri SM, Ismail Z, et al. Effect of MHD and porosity on exact solutions and flow of a hybrid Casson-nanofluid. J Adv Res Fluid Mech Therm Sci. 2018;44:131–139.
  • Jakeer S, Bala Anki Reddy P. Entropy generation on EMHD stagnation point flow of hybrid nanofluid over a stretching sheet: homotopy perturbation solution. Phys Scr. 2020;95:125203. doi:10.1088/1402-4896/abc03c
  • Khan M, Ali W, Ahmed J. A hybrid approach to study the influence of Hall current in radiative nanofluid flow over a rotating disk. Appl Nanosci. 2020;10:5167–5177. doi:10.1007/s13204-020-01415-w
  • Seth GS, Kumar R, Tripathi R, et al. Double diffusive MHD Casson fluid flow in a non-Darcy porous medium with Newtonian heating and thermo-diffusion effects. Int J Heat Technol. 2018;36:1517–1527. doi:10.18280/ijht.360446
  • Hayat T, Qayyum S, Khan MI, et al. Entropy generation in magnetohydrodynamic radiative flow due to rotating disk in presence of viscous dissipation and joule heating. Phys Fluids. 2018;30:017101. doi:10.1063/1.5009611
  • Kumaraswamy B. Neural networks for data classification. Artif Intell Data Min. 2021: 109–131. doi:10.1016/B978-0-12-820601-0.00011-2
  • Wilson P, Mantooth HA. Model-based optimization techniques. Model Eng Complex Electron Syst. 2013: 347–367. doi:10.1016/B978-0-12-385085-0.00010-5
  • Makinde OD, Mahanthesh B, Gireesha BJ, et al. MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles. Defect Diffus Forum. 2018;384:69–79. doi:10.4028/www.scientific.net/DDF.384.69
  • Uddin I, Ullah I, Raja MAZ, et al. Design of intelligent computing networks for numerical treatment of thin film flow of Maxwell nanofluid over a stretched and rotating surface. Surfaces and Interfaces. 2021;24:101107. doi:10.1016/j.surfin.2021.101107
  • Mustafa I, Javed T, Ghaffari A. Heat transfer in MHD stagnation point flow of a ferrofluid over a stretchable rotating disk. J Mol Liq. 2016;219:526–532. doi:10.1016/j.molliq.2016.03.046
  • Ahmed J, Khan M, Ahmad L, et al. Thermally radiative flow of Maxwell nanofluid over a permeable rotating disk. Phys Scr. 2019;94:125016. doi:10.1088/1402-4896/ab3b9a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.