90
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Alternative optical phase of the conformable ferromagnetic and antiferromagnetic media

ORCID Icon, &
Received 11 Jan 2023, Accepted 02 May 2023, Published online: 27 Jun 2023

References

  • Hilfer R. (Ed.). Applications of fractional calculus in physics. Singapore: World scientific; 2000.
  • Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Vol. 204. North-Holland: Elsevier; 2006.
  • Kumar D, Agarwal RP, Singh J. A modified numerical scheme and convergence analysis for fractional model of Lienard's equation. J Comput Appl Math. 2018;339:405–413. doi: 10.1016/j.cam.2017.03.011
  • Singh J, Kumar D, Baleanu D. On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel. Chaos: An Interdisciplinary J Nonlinear Sci. 2017;27(10):103113. doi: 10.1063/1.4995032
  • Kumar D, Singh J, Baleanu D. A new numerical algorithm for fractional Fitzhugh–Nagumo equation arising in transmission of nerve impulses. Nonlinear Dyn. 2018;91(1):307–317. doi: 10.1007/s11071-017-3870-x
  • Zhao D, Singh J, Kumar D, et al. An efficient computational technique for local fractional heat conduction equations in fractal media. J Nonlinear Sci & Appl (JNSA). 2017;10(04):1478–1486. doi: 10.22436/jnsa
  • Hajipour M, Jajarmi A, Baleanu D. An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J Comput Nonlinear Dyn. 2018;13(2):021013. doi: 10.1115/1.4038444
  • Baleanu D, Jajarmi A, Hajipour M. A new formulation of the fractional optimal control problems involving Mittag–Leffler nonsingular kernel. J Optim Theory Appl. 2017;175(3):718–737. doi: 10.1007/s10957-017-1186-0
  • Westerlund S, Ekstam L. Capacitor theory. IEEE Trans Dielectr Electr Insul. 1994;1(5):826–839. doi: 10.1109/94.326654
  • Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. San Diego, CA: Elsevier; 1998.
  • Oldham K, Spanier J. The fractional calculus theory and applications of differentiation and integration to arbitrary order. London, UK: Elsevier; 1974.
  • Khalil R, Al Horani M, Yousef A, et al. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65–70. doi: 10.1016/j.cam.2014.01.002
  • Abdeljawad T. On conformable fractional calculus. J Comput Appl Math. 2015;279:57–66. doi: 10.1016/j.cam.2014.10.016
  • Katugampola UN. A new fractional derivative with classical properties. arXiv preprint arXiv:1410.6535. 2014.
  • Iyiola OS, Nwaeze ER. Some new results on the new conformable fractional calculus with application using D'Alambert approach. Progr Fract Differ Appl. 2016;2(2):115–122. doi: 10.18576/pfda/020204
  • Ünal E, Gökdoğan A. Solution of conformable fractional ordinary differential equations via differential transform method. Optik. 2017;128:264–273. doi: 10.1016/j.ijleo.2016.10.031
  • Aphithana A, Ntouyas SK, Tariboon J. Forced oscillation of fractional differential equations via conformable derivatives with damping term. Bound Value Prob. 2019;2019(1):1–16. doi: 10.1186/s13661-018-1115-7
  • Silva FS, Moreira DM, Moret MA. Conformable Laplace transform of fractional differential equations. Axioms. 2018;7(3):55. doi: 10.3390/axioms7030055
  • Anderson DR, Ulness DJ. Newly defined conformable derivatives. Adv Dyn Syst Appl. 2015;10(2):109–137. doi: 10.13140/RG.2.1.1744.9444
  • ALHorani M, Khalil R. Total fractional differentials with applications to exact fractional differential equations. Int J Comput Math. 2018;95(6-7):1444–1452. doi: 10.1080/00207160.2018.1438602
  • Lazopoulos KA, Lazopoulos AK. Fractional differential geometry of curves & surfaces. Progr Fract Differ Appl. 2016;2(3):169–186. doi: 10.18576/pfda/020302
  • Baleanu D, Vacaru S. Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics. Open Phys. 2011;9(5):1267–1279. doi: 10.2478/s11534-011-0040-5
  • Baleanu D, Vacaru SI. Fractional almost Kä hler–Lagrange geometry. Nonlinear Dyn. 2011;64(4):365–373. doi: 10.1007/s11071-010-9867-3
  • Baleanu D, Vacaru SI. Fractional curve flows and solitonic hierarchies in gravity and geometric mechanics. J Math Phys. 2011;52(5):053514. doi: 10.1063/1.3589964
  • Podlubny I. Fractional differential equations. San Diego (CA): Academic Press; 1999.
  • Jackson EA. Perspectives of nonlinear dynamics (No. IPPJ–723). Nagoya Univ.(Japan). Inst. of Plasma Physics; 1985.
  • Ginoux JM. Differential geometry applied to dynamical systems. Vol. 66. Singapore: World Scientific; 2009.
  • Kurka P. Topological and symbolic dynamics. Paris, France: Société mathématique de France; 2003.
  • Kugler M, Shtrikman S. Berry's phase, locally inertial frames, and classical analogues. Phys Rev D. 1988;37(4):934–937. doi: 10.1103/PhysRevD.37.934
  • Fang XS, Lin ZQ. Field in single-mode helically-wound optical fibers. IEEE Trans Microw Theory Tech. 1985;33(11):1150–1154. doi: 10.1109/TMTT.1985.1133187
  • Frins EM, Dultz W. Rotation of the polarization plane in optical fibers. J Lightwave Technol. 1997;15(1):144–147. doi: 10.1109/50.552122
  • Smith AM. Birefringence induced by bends and twists in single-mode optical fiber. Appl Opt. 1980;19(15):2606–2611. doi: 10.1364/AO.19.002606
  • Zendehnam A, Mirzaei M, Farashiani A, et al. Investigation of bending loss in a single-mode optical fibre. Pramana. 2010;74(4):591–603. doi: 10.1007/s12043-010-0052-5
  • Ulrich R, Rashleigh SC, Eickhoff W. Bending-induced birefringence in single-mode fibers. Opt Lett. 1980;5(6):273–275. doi: 10.1364/OL.5.000273
  • Langer J, Singer DA. Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 1996;38(4):605–618. doi: 10.1137/S0036144593253290
  • Goriely A, Tabor M. Nonlinear dynamics of filaments I. Dynamical Instabilities. Phys D: Nonlinear Phenom. 1997;105(1–3):20–44. doi: 10.1016/S0167-2789(96)00290-4
  • Huynen A, Detournay E, Denoël V. Eulerian formulation of elastic rods. Proc R Soc A: Math Phys Eng Sci. 2016;472(2190):20150547. doi: 10.1098/rspa.2015.0547
  • Guven J, Valencia DM, Vázquez-Montejo P. Environmental bias and elastic curves on surfaces. J Phys A: Math Theoret. 2014;47(35):355201. doi: 10.1088/1751-8113/47/35/355201
  • Körpınar T, Demirkol RC, Körpınar Z. Elastic magnetic curves of ferromagnetic and superparamagnetic models. Math Methods Appl Sci. 2021;44(7):5797–5820. doi: 10.1002/mma.v44.7
  • Bouchiat C, Mezard M. Elasticity model of a supercoiled DNA molecule. Phys Rev Lett. 1998;80(7):1556–1559. doi: 10.1103/PhysRevLett.80.1556
  • Balakrishnan R, Bishop AR, Dandoloff R. Anholonomy of a moving space curve and applications to classical magnetic chains. Phys Rev B. 1993;47(6):3108–3117. doi: 10.1103/PhysRevB.47.3108
  • Balakrishnan R, Bishop AR, Dandoloff R. Geometric phase in the classical continuous antiferromagnetic Heisenberg spin chain. Phys Rev Lett. 1990;64(18):2107–2110. doi: 10.1103/PhysRevLett.64.2107
  • Körpinar T, Demirkol RC. Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations. Optik. 2020;200:163334. doi: 10.1016/j.ijleo.2019.163334
  • Korpinar T, Demirkol RC. Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi-Riemannian manifold. J Mod Opt. 2019;66(8):857–867. doi: 10.1080/09500340.2019.1579930
  • Yilmaz B. A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus. Optik. 2021;247:168026. doi: 10.1016/j.ijleo.2021.168026
  • Korpinar T, Demirkol RC, Korpinar Z. Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space. Int J Geom Methods Mod Phys. 2019;16(08):1950117. doi: 10.1142/S0219887819501172
  • Köpinar T, Demirkol RC, Asíl V. The motion of a relativistic charged particle in a homogeneous electromagnetic field in De-Sitter space. Rev Mex de fís. 2018;64(2):176–180. doi: 10.31349/revmexfis.64.176
  • Körpınar T, Demirkol RC, Körpınar Z. Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations. Eur Phys J D. 2019;73(1):1–11. doi: 10.1140/epjd/e2018-90122-y
  • Körpinar T, Demirkol RC. Berry phase of the linearly polarized light wave along an optical fiber and its electromagnetic curves via quasi adapted frame. Waves Random Complex Media. 2020;1–20.
  • Körpınar T, Demirkol RC, Körpınar Z. Magnetic helicity and electromagnetic vortex filament flows under the influence of Lorentz force in MHD. Optik. 2021;242:167302. doi: 10.1016/j.ijleo.2021.167302
  • Körpınar T, Demirkol RC, Körpınar Z. Optical magnetic helicity with binormal electromagnetic vortex filament flows in MHD. Optik. 2021;247:167544. doi: 10.1016/j.ijleo.2021.167544
  • Korpinar T, Demirkol RC. Directional magnetic and electric vortex lines and their geometries in Minkowski space. Filomat. 2021;35(3):1015–1031. doi: 10.2298/FIL2103015K
  • Körpinar T, Demirkol RC, Asil V. Directional magnetic and electric vortex lines and their geometries. Ind J Phys. 2021;95(11):2393–2404. doi: 10.1007/s12648-020-01885-2
  • Hänninen R, Hietala N, Salman H. Helicity within the vortex filament model. Sci Rep. 2016;6(1):1–12. doi: 10.1038/s41598-016-0001-8
  • Gözütok U, Çoban H, Sağıroğlu Y. Frenet frame with respect to conformable derivative. Filomat. 2019;33(6):1541–1550. doi: 10.2298/FIL1906541G
  • Korpinar Z, Tchier F, İnç M, et al. New soliton solutions of the fractional regularized long wave burger equation by means of conformable derivative. Res Phys. 2019;14:102395. doi: 10.1016/j.rinp.2019.102395
  • Odibat Z, Momani S. Numerical methods for nonlinear partial differential equations of fractional order. Appl Math Model. 2008;32(1):28–39. doi: 10.1016/j.apm.2006.10.025
  • Morales-Delgado VF, Gómez-Aguilar JF, Escobar-Jiménez RF, et al. Fractional conformable derivatives of Liouville–Caputo type with low-fractionality. Phys A: Stat Mech Appl. 2018;503:424–438. doi: 10.1016/j.physa.2018.03.018
  • Pérez JES, Gómez-Aguilar JF, Baleanu D, et al. Chaotic attractors with fractional conformable derivatives in the Liouville–Caputo sense and its dynamical behaviors. Entropy. 2018;20(5):384. doi: 10.3390/e20050384
  • Yépez-Martínez H, Gómez-Aguilar JF, Atangana A. First integral method for non-linear differential equations with conformable derivative. Math Model Nat Phenom. 2018;13(1):14. doi: 10.1051/mmnp/2018012
  • Tajadodi H, Khan ZA, Gómez-Aguilar JF, et al. Exact solutions of conformable fractional differential equations. Res Phys. 2021;22:103916. doi: 10.1016/j.rinp.2021.103916
  • Aderyani SR, Saadati R, Vahidi J, et al. The exact solutions of conformable time-fractional modified nonlinear Schrödinger equation by first integral method and functional variable method. Opt Quant Electron. 2022;54(4):218. doi: 10.1007/s11082-022-03605-y
  • Yépez-Martínez H, Pashrashid A, Gómez-Aguilar JF, et al. The novel soliton solutions for the conformable perturbed nonlinear Schrödinger equation. Mod Phys Lett B. 2022;36(08):2150597. doi: 10.1142/S0217984921505977

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.