31
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Peristaltic transportation of thermally radiative Sutterby fluid in a tapered microfluidic vessel with convective conditions

ORCID Icon &
Received 09 Dec 2021, Accepted 27 Apr 2023, Published online: 19 Jun 2023

References

  • Sutterby JL. Laminar converging flow of dilute polymer solutions in conical sections: part I. Viscosity data, new viscosity model, tube flow solution. AIChE J. 1966;12(1):63–68. doi:10.1002/aic.690120114
  • Hayat T, Ayub S, Alsaedi A, et al. Numerical simulation for peristaltic activity of Sutterby fluid with modified Darcy’s law. Results Phys. 2017;7:762–768. doi:10.1016/j.rinp.2017.01.038
  • Akram J, Akbar NS, Tripathi D, et al. Blood-based graphene oxide nanofluid flow through capillary in the presence of electromagnetic fields: a Sutterby fluid model. Microvas Res. 2020;132:104062. doi:10.1016/j.mvr.2020.104062
  • Atlas F, Javed M, Imran N, et al. Effects of heat and mass transfer on the peristaltic motion of Sutterby fluid in an inclined channel. Multidiscip Model Mater Struct. 2020;16(6):1357–1372. doi:10.1108/MMMS-08-2019-0156
  • Imran N, Javed M, Sohail M, et al. Theoretical exploration of thermal transportation with chemical reactions for sutterby fluid model obeying peristaltic mechanism. J Mater Res Technol. 2020;9(4):7449–7459. doi:10.1016/j.jmrt.2020.04.071
  • Hayat T, Khan AA, Bibi F, et al. Entropy minimization for magneto peristaltic transport of Sutterby materials subject to temperature dependent thermal conductivity and non-linear thermal radiation. Int Commun Heat Mass Transf. 2021;122:105009. doi:10.1016/j.icheatmasstransfer.2020.105009
  • Hayat T, Zahir H, Mustafa M, et al. Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and compliant walls: a numerical study. Results Phys. 2016;6:805–810. doi:10.1016/j.rinp.2016.10.015
  • Hayat T, Alsaadi F, Rafiq M, et al. On effects of thermal radiation and radial magnetic field for peristalsis of sutterby liquid in a curved channel with wall properties. Chin J Phys. 2017;55(5):2005–2024. doi:10.1016/j.cjph.2017.08.004
  • Latham TW. Fluid motions in peristaltic pump [MS thesis]. Cambridge, MA: MIT; 1966.
  • Shapiro AH, Jaffrin MY, Weinberg SL, et al. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37(4):799–825. doi:10.1017/S0022112069000899
  • Rajashekhar C, Vaidya H, Prasad KV, et al. Unsteady flow of Rabinowitsch fluid peristaltic transport in a non-uniform channel with temperature-dependent properties. Alex Eng J. 2020;59(6):4745–4758. doi:10.1016/j.aej.2020.08.036
  • Iqbal N, Yasmin H, Bibi A, et al. Peristaltic motion of Maxwell fluid subject to convective heat and mass conditions. Ain Shams Eng J. 2021;12(3):3121–3131. doi:10.1016/j.asej.2021.01.015
  • Abbas Z, Rafiq MY, Hasnain J, et al. Peristaltic transport of a Casson fluid in a non-uniform inclined tube with Rosseland approximation and wall properties. Arab J Sci Eng. 2021;46(3):1997–2007. doi:10.1007/s13369-020-04969-7
  • Abbas Z, Rafiq MY. Analysis of heat and mass transfer phenomena in peristaltic transportation of hyperbolic tangent fluid in tapered channel. Asia-Pacific J Chem Eng. 2021;16(5):e2675. doi:10.1002/apj.2675
  • Saleem A, Akhtar S, Alharbi FM, et al. Physical aspects of peristaltic flow of hybrid nano fluid inside a curved tube having ciliated wall. Results Phys. 2020;19:103431. doi:10.1016/j.rinp.2020.103431
  • Akbar Y, Abbasi FM. Impact of variable viscosity on peristaltic motion with entropy generation. Int Commun Heat Mass Transf. 2020;118:104826. doi:10.1016/j.icheatmasstransfer.2020.104826
  • Abo-Elkhair RE, Bhatti MM, Mekheimer KS, et al. Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: an expanding horizon. Int Commun Heat Mass Transf. 2021;123:105228. doi:10.1016/j.icheatmasstransfer.2021.105228
  • Qureshi IH, Awais M, Awan SE, et al. Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: numerical treatment. Case Stud Therm Eng. 2021;26:101019. doi:10.1016/j.csite.2021.101019
  • Rashid M, Ansar K, Nadeem S, et al. Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Phys A Stat Mech Appl. 2020;553:123979. doi:10.1016/j.physa.2019.123979
  • Akram S, Athar M, Saeed K, et al. Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Stud Therm Eng. 2021;25:100965. doi:10.1016/j.csite.2021.100965
  • Abbas Z, Rafiq MY, Hasnain J, et al. Impacts of Lorentz force and chemical reaction on peristaltic transport of Jeffrey fluid in a penetrable channel with injection/suction at walls. Alex Eng J. 2021;60(1):1113–1122. doi:10.1016/j.aej.2020.10.035
  • Abbas Z, Rafiq MY, Alshomrani AS, et al. Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube. Case Stud Therm Eng. 2021;23:100817. doi:10.1016/j.csite.2020.100817
  • Tanveer A, Mahmood S, Hayat T, et al. On electroosmosis in peristaltic activity of MHD non-Newtonian fluid. Alex Eng J. 2021;60(3):3369–3377. doi:10.1016/j.aej.2020.12.051
  • Hayat T, Nisar Z, Alsaedi A, et al. Impacts of slip in radiative MHD peristaltic flow of fourth grade nanomaterial with chemical reaction. Int Commun Heat Mass Transf. 2020;119:104976. doi:10.1016/j.icheatmasstransfer.2020.104976
  • Divya BB, Manjunatha G, Rajashekhar C, et al. The hemodynamics of variable liquid properties on the MHD peristaltic mechanism of Jeffrey fluid with heat and mass transfer. Alex Eng J. 2020;59(2):693–706. doi:10.1016/j.aej.2020.01.038
  • Nisar Z, Hayat T, Alsaedi A, et al. Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid. Int Commun Heat Mass Transf. 2020;116:104655. doi:10.1016/j.icheatmasstransfer.2020.104655
  • Imran N, Javed M, Sohail M, et al. Simultaneous effects of heterogeneous-homogeneous reactions in peristaltic flow comprising thermal radiation: Rabinowitsch fluid model. J Mater Res Technol. 2020;9(3):3520–3529. doi:10.1016/j.jmrt.2020.01.089
  • Alsaedi A, Nisar Z, Hayat T, et al. Analysis of mixed convection and Hall current for MHD peristaltic transport of nanofluid with compliant wall. Int Commun Heat Mass Transf. 2021;121:105121. doi:10.1016/j.icheatmasstransfer.2021.105121
  • Ibrahim MG, Hasona WM, ElShekhipy AA, et al. Concentration-dependent viscosity and thermal radiation effects on MHD peristaltic motion of synovial nanofluid: applications to rheumatoid arthritis treatment. Comput Methods Programs Biomed. 2019;170:39–52. doi:10.1016/j.cmpb.2019.01.001
  • Prakash J, Siva EP, Tripathi D, et al. Nanofluids flow driven by peristaltic pumping in occurrence of magnetohydrodynamics and thermal radiation. Mater Sci Semicond Process. 2019;100:290–300. doi:10.1016/j.mssp.2019.05.017
  • Ahmed B, Hayat T, Abbasi FM, et al. Mixed convection and thermal radiation effect on MHD peristaltic motion of Powell-Eyring nanofluid. Int Commun Heat Mass Transf. 2021;126:105320. doi:10.1016/j.icheatmasstransfer.2021.105320
  • Khazayinejad M, Hafezi M, Dabir B, et al. Peristaltic transport of biological graphene-blood nanofluid considering inclined magnetic field and thermal radiation in a porous media. Powder Technol. 2021;384:452–465. doi:10.1016/j.powtec.2021.02.036
  • Singla RK and Das R. Application of Adomian decomposition method and inverse solution for a fin with variable thermal conductivity and heat generation. Int J Heat Mass Transf. 2013;66:496-506. doi:10.1016/j.ijheatmasstransfer.2013.07.053
  • Singla RK, Das R. Adomian decomposition method for a stepped fin with all temperature-dependent modes of heat transfer. Int J Heat Mass Transf. 2015;82:447–459. doi:10.1016/j.ijheatmasstransfer.2014.11.070
  • Das R. A simulated annealing-based inverse computational fluid dynamics model for unknown parameter estimation in fluid flow problem. Int J Comut Fluid Dyn. 2012;26(9-10):499–513. doi:10.1080/10618562.2011.632375
  • Das R, Mishra SC, Ajith M, et al. An inverse analysis of a transient 2-D conduction–radiation problem using the lattice Boltzmann method and the finite volume method coupled with the genetic algorithm. J Quant Spectrosc Radiat Transf. 2008;109(11):2060–2077. doi:10.1016/j.jqsrt.2008.01.011
  • Kundu B, Das R, Lee KS, et al. Differential transform method for thermal analysis of exponential fins under sensible and latent heat transfer. Procedia Eng. 2015;127:287–294. doi:10.1016/j.proeng.2015.11.370
  • Kothandapani M, Pushparaj V, Prakash J, et al. Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. J King Saud Univ Eng Sci. 2018;30(1):86–95.
  • Asha SK, Deepa CK. Entropy generation for peristaltic blood flow of a magneto-micropolar fluid with thermal radiation in a tapered asymmetric channel. Results Eng. 2019;3:100024. doi:10.1016/j.rineng.2019.100024
  • Akram S, Afzal Q, Aly EH, et al. Half-breed effects of thermal and concentration convection of peristaltic pseudoplastic nanofluid in a tapered channel with induced magnetic field. Case Stud Therm Eng. 2020;22:100775. doi:10.1016/j.csite.2020.100775
  • Rafiq MY, Abbas Z, Hasnain J, et al. Theoretical exploration of thermal transportation with Lorentz force for fourth-grade fluid model obeying peristaltic mechanism. Arab J Sci Eng. 2021;46(12):12391–12404. doi:10.1007/s13369-021-05877-0
  • Rafiq MY, Abbas Z, Ullah MZ, et al. Peristaltic mechanism of couple stress nanomaterial in a tapered channel. Ain Shams Eng J. 2022;13(6):101779. doi:10.1016/j.asej.2022.101779

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.