0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rayleigh wave in nonlocal piezo-thermo-electric semiconductor medium with fractional MGT model

, ORCID Icon, ORCID Icon, &
Received 02 Dec 2023, Accepted 17 Jun 2024, Published online: 29 Jul 2024

References

  • Neamen D. Semiconductor physics and devices basic principles. Boston: Richard D. Irwin Inc.; 1992.
  • Smith RC. Smart material systems. Philadelphia: Society for Industrial and Applied Mathematics; 2005.
  • Mindlin RD. Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int J Solids Struct. 1974;10(6):625–637. doi:10.1016/0020-7683(74)90047-X
  • Chandrasekharaiah DS. A generalized linear thermoelasticity theory for piezoelectric media. Acta Mech. 1988;71(1–4):39–49. doi:10.1007/BF01173936
  • Aouadi M. Generalized thermo-piezoelectric problems with temperature-dependent properties. Int J Solids Struct. 2006;43(21):6347–6358. doi:10.1016/j.ijsolstr.2005.09.003
  • Biot MA. Thermoelasticity and irreversible thermodynamics. J Appl Phys. 1956;27(3):240–253. doi:10.1063/1.1722351
  • Lord HW, Shulman Y. A generalized dynamical theory of thermoelasticity. J Mech Phys Solids. 1967;15(5):299–309. doi:10.1016/0022-5096(67)90024-5
  • Green AE, Lindsay KA. Thermoelasticity. J Elast. 1972;2(1):1–7. doi:10.1007/BF00045689
  • Chandrasekharaiah DS. Thermoelasticity with second sound: a review. Appl Mech Rev. 1986;39(3):355–376. doi:10.1115/1.3143705
  • Chandrasekharaiah DS. Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev. 1998;51(12):705–729. doi:10.1115/1.3098984
  • Green AE, Naghdi PM. A re-examination of the basic postulates of thermomechanics. Proc R Soc London Ser A Math Phys Sci. 1991;432(1885):171–194. doi:10.1098/rspa.1991.0012
  • Green AE, Naghdi PM. Thermoelasticity without energy dissipation. J Elast. 1993;31(3):189–208. doi:10.1007/BF00044969
  • Green AE, Naghdi PM. On undamped heat waves in an elastic solid. J Therm Stress. 1992;15(2):253–264. doi:10.1080/01495739208946136
  • Diethelm K, Ford NJ. Analysis of fractional differential equations. J Math Anal Appl. 2002;265(2):229–248. doi:10.1006/jmaa.2000.7194
  • de Oliveira EC, Tenreiro Machado JA. A review of definitions for fractional derivatives and integral. Math Probl Eng. 2014;2014(1940):1–6. doi:10.1155/2014/238459
  • Wang JL, Li HF. Memory-dependent derivative versus fractional derivative (I): difference in temporal modeling. J Comput Appl Math. 2021;384:112923. doi:10.1016/j.cam.2020.112923
  • Edelen DGB, Laws N. On the thermodynamics of systems with nonlocality. Arch Ration Mech Anal. 1971;43(1):24–35. doi:10.1007/BF00251543
  • Edelen DGB, Green AE, Laws N. Nonlocal continuum mechanics. Arch Ration Mech Anal. Oct. 1971;43(1):36–44. doi:10.1007/BF00251544
  • Eringen AC, Edelen DGB. On nonlocal elasticity. Int J Eng Sci. Mar. 1972;10(3):233–248. doi:10.1016/0020-7225(72)90039-0
  • Thompson PA, Beavers GS. Compressible-fluid dynamics. J Appl Mech. Jun. 1972;39(2):366–366. doi:10.1115/1.3422684
  • Marchand R, McDevitt T, Triggiani R. An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math Methods Appl Sci. Oct. 2012;35(15):1896–1929. doi:10.1002/mma.1576
  • Quintanilla R. Moore–Gibson–Thompson thermoelasticity. Math Mech Solids. 2019;24(12):4020–4031. doi:10.1177/1081286519862007
  • Abouelregal AE, Ahmad H, Yao S-W, et al. Thermo-viscoelastic orthotropic constraint cylindrical cavity with variable thermal properties heated by laser pulse via the MGT thermoelasticity model. Open Phys. Sep. 2021;19(1):504–518. doi:10.1515/phys-2021-0034
  • Gupta S, Dutta R, Das S. Memory response in a nonlocal micropolar double porous thermoelastic medium with variable conductivity under Moore–Gibson–Thompson thermoelasticity theory. J Ocean Eng Sci. 2023;8(3):263–277. doi:10.1016/j.joes.2022.01.010
  • Chakravorty S, Ghosh S, Sur A. Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Eng. 2017;173:851–858. doi:10.1016/j.proeng.2016.12.125
  • Sur A, Mondal S, Kanoria M. Memory response in the vibration of a micro-scale beam due to time-dependent thermal loading. Mech Based Des Struct Mach. 2022;50(4):1161–1183. doi:10.1080/15397734.2020.1745078
  • Singh B, Kumar H, Mukhopadhyay S. Thermoelastic damping analysis in micro-beam resonators in the frame of modified couple stress and Moore–Gibson–Thompson (MGT) thermoelasticity theories. Waves Random Complex Media. Nov. 2021;231:3003–3015. doi:10.1080/17455030.2021.2001073
  • Mondal S, Sur A. Field equations and memory effects in a functionally graded magneto-thermoelastic rod. Mech Based Des Struct Mach. 2023;51(3):1408–1430. doi:10.1080/15397734.2020.1868320
  • Othman MIA, Mondal S, Sur A. Influence of memory-dependent derivative on generalized thermoelastic rotating porous solid via three-phase-lag model. Int J Comput Mater Sci Eng. 2023;12(4):2350009.
  • Sur A. Moore–Gibson–Thompson generalized heat conduction in a thick plate. Indian J Phys. 2024;98(5):1715–1726. doi:10.1007/s12648-023-02931-5
  • Mondal S, Sur A. Thermo-hydro-mechanical interaction in a poroelastic half-space with nonlocal memory effects. Int J Appl Comput Math. 2024;10(2):1–22. doi:10.1007/s40819-024-01717-5
  • Sur A. Photo-thermoelastic inter action in a semiconductor with cylindrical cavity due to memory-effect. Mech Time Dependent Mater. 2023:1–25. doi:10.1007/s11043-023-09637-5
  • Sur A. Magneto-photo-thermoelastic interaction in a slim strip characterized by hereditary features with two relaxation times. Mech Time Dependent Mater. 2023:1–26. doi:10.1007/s11043-023-09658-0
  • Yu J-N, She C, Xu Y-P, et al. On size-dependent generalized thermoelasticity of nanobeams. Waves Random Complex Media. Jan. 2022:1–30. doi:10.1080/17455030.2021.2019351
  • Yang Z, Cheng D, Cong G, et al. Dual-phase-lag thermoelastic damping in nonlocal rectangular nanoplates. Waves Random Complex Media. Jan. 2024;34(1):162–181. doi:10.1080/17455030.2021.1903117
  • Pathania V, Kumar R, Gupta V, et al. Generalized plane waves in a rotating thermoelastic double porous solid. Int J Appl Mech Eng. Dec. 2022;27(4):138–154. doi:10.2478/ijame-2022-0055
  • Pathania V, Kumar R, Gupta V, et al. Double porous thermoelastic waves in a homogeneous, isotropic solid with inviscid liquid. Arch Appl Mech. 2023;93(5):1943–1962. doi:10.1007/s00419-023-02364-w
  • Kumar R, Gupta V, Pathania V, et al. Energy ratio response at the interface of elastic and dual-porous thermoelastic half-spaces. Phys Scr. Nov. 2023;98(11):115211. doi:10.1088/1402-4896/acfced
  • Gupta S, Dutta R, Das S, et al. Double poro-magneto-thermoelastic model with microtemperatures and initial stress under memory-dependent heat transfer. J Therm Stress. Aug. 2023;46(8):743–774. doi:10.1080/01495739.2023.2202718
  • Dutta R, Das S, Gupta S, et al. Nonlocal fiber-reinforced double porous material structure under fractional-order heat and mass transfer. Int J Numer Methods Heat Fluid Flow. 2023;33(11):3608–3641. doi:10.1108/HFF-05-2023-0295
  • Gupta S, Das S, Dutta R, et al. Higher-order fractional and memory response in nonlocal double poro-magneto-thermoelastic medium with temperature-dependent properties excited by laser pulse. J Ocean Eng Sci. Apr. 2022. doi:10.1016/j.joes.2022.04.013
  • Gupta S, Dutta R, Das S. Photothermal excitation of an initially stressed nonlocal semiconducting double porous thermoelastic material under fractional order triple-phase-lag theory. Int J Numer Methods Heat Fluid Flow. 2022;32(12):3697–3725. doi:10.1108/HFF-10-2021-0700
  • Dutta R, Das S, Bhengra N, et al. Nonlocal effect on shear wave propagation in a fiber-reinforced poroelastic layered structure subjected to interfacial impulsive disturbance. Soil Dyn Earthq Eng. Jan. 2024;176:108307. doi:10.1016/j.soildyn.2023.108307
  • Kumar R, Pathania V, Gupta V, et al. Thermoelastic modeling with dual porosity interacting with an inviscid liquid. J Appl Comput Mech. 2024;10(1):111–124. doi:10.22055/jacm.2023.44488.4221
  • Gupta V, Barak MS, Das S. Vibrational analysis of size-dependent thermo-piezo-photo-electric semiconductor medium under memory-dependent Moore–Gibson–Thompson photo-thermoelasticity theory. Mech Adv Mater Struct. Dec. 2023:1–17. doi:10.1080/15376494.2023.2291804
  • Kumar R, Gupta V, Pathania V, et al. Analysis of waves at boundary surfaces at distinct media with nonlocal dual-phase-lag. Proc Natl Acad Sci India Sect A Phys Sci. Dec. 2023;93(4):573–585. doi:10.1007/s40010-023-00850-y
  • Barak MS, Ahmad H, Kumar R, et al. Behavior of higher-order MDD on energy ratios at the interface of thermoelastic and piezothermoelastic mediums. Sci Rep. Oct. 2023;13(1):17170. doi:10.1038/s41598-023-44339-5
  • Gupta V, Barak MS, Ahmad H. Reflection of quasi plasma wave in photo-piezo semiconductor medium with distinct higher order fractional derivative two temperature models. Phys Scr. Feb. 2024;99(2):025515. doi:10.1088/1402-4896/ad1972
  • Gupta V, Barak MS. Fractional and MDD analysis of piezo-photo-thermo-elastic waves in semiconductor medium. Mech Adv Mater Struct. Jul. 2023:1–16. doi:10.1080/15376494.2023.2238201
  • Kumar S, Barak MS, Kumari N, et al. The effect of viscosity and hyperbolic two-temperature on energy ratios in elastic and piezoviscothermoelastic half-spaces. Mech Time Dependent Mater. 2024:1–21. doi:10.1007/s11043-023-09657-1
  • Gupta V, Barak MS. Photo-thermo-piezo-elastic waves in semiconductor medium subject to distinct two temperature models with higher order memory dependencies. Int J Numer Methods Heat Fluid Flow. Jan. 2024;34(1):84–108. doi:10.1108/HFF-07-2023-0380
  • Gupta V, Barak MS, Ahmad H, et al. Response of moisture and temperature diffusivity on an orthotropic hygro-thermo-piezo-elastic medium. J Nonlinear Math Phys. 2024;31(1):1–26. doi:10.1007/s44198-024-00187-z
  • Nowacki W. Some general theorems of thermopiezoelectricity. J Therm Stress. Oct. 1978;1(2):171–182. doi:10.1080/01495737808926940
  • Nowacki W. Foundations of linear piezoelectricity. Electromagn Interact Elastic solids. 1979;257:105–157.
  • Eringen AC. Nonlocal continuum mechanics and some applications. In: Barut AO, editor. Nonlinear equations in physics and mathematics. Dordrecht: Springer; 1978. p. 271–318.
  • Lotfy K, Elidy ES, Tantawi RS. Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material. Int J Mod Phys C. Jul. 2021;32(7):2150088. doi:10.1142/S0129183121500881
  • Eringen A, Wegner J. Nonlocal continuum field theories. Appl Mech Rev. Mar. 2003;56(2):B20–B22. doi:10.1115/1.1553434
  • Gupta V, Barak MS, Das S. Impact of memory-dependent heat transfer on Rayleigh waves propagation in nonlocal piezo-thermo-elastic medium with voids. Int J Numer Methods Heat Fluid Flow. Mar. 2024;34(4):1902–1926. doi:10.1108/HFF-10-2023-0615
  • Garrappa R. Numerical evaluation of two and three parameter Mittag-Leffler functions. SIAM J Numer Anal. 2015;53(3):1350–1369. doi:10.1137/140971191
  • Gorenflo R, Mainardi F, Rogosin S. Mittag-Leffler function: properties and applications. Handb Fract Calc Appl. Feb. 2019;1:269–296. doi:10.1515/9783110571622
  • Burden RL, Faires JD, Burden AM. Numerical analysis, no. 1. Boston: Cengae Learning; 2015.
  • Barak MS, Gupta V. Memory-dependent and fractional order analysis of the initially stressed piezo-thermoelastic medium. Mech Adv Mater Struct. May 2023:1–15. doi:10.1080/15376494.2023.2211065
  • Ahmed EAA, Abou-Dina MS, Ghaleb AF. Plane wave propagation in a piezo-thermoelastic rotating medium within the dual-phase-lag model. Microsyst Technol. 2020;26(3):969–979. doi:10.1007/s00542-019-04567-0
  • Khamis AK, Lotfy K, El-Bary AA, et al. Thermal-piezoelectric problem of a semiconductor medium during photo-thermal excitation. Waves Random Complex Media. 2021;31(6):2499–2513. doi:10.1080/17455030.2020.1757784
  • Lotfy K, Sarkar N. Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature. Mech Time Dependent Mater. 2017;21(4):519–534. doi:10.1007/s11043-017-9340-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.