732
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Multinomial logistic regression for prediction of vulnerable road users risk injuries based on spatial and temporal assessment

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 379-390 | Received 15 Feb 2019, Accepted 15 Jul 2019, Published online: 31 Jul 2019

References

  • Abdulhafedh, A. (2017). Incorporating the multinomial logistic regression in vehicle crash severity modeling: A detailed overview. Journal of Transportation Technologies, 7(3), 279–303. doi:10.4236/jtts.2017.73019
  • Alliance for Biking & Walking. (2014). Bicycling and walking in the United States: 2012 Benchmarking Report. Retrieved from http://www.bikewalkalliance.org/download-the-2014-benchmarking-report%5Cnhttp://www.peoplepoweredmovement.org
  • ANSR. (2017). Annual Report 2017 (30 days victims) - National Authority of Road Safety [in Portuguese]. Portuguese National Authority for Road Safety.
  • Bao, J., Liu, P., & Ukkusuri, S. V. (2019). A spatiotemporal deep learning approach for citywide short-term crash risk prediction with multi-source data. Accident Analysis & Prevention, 122, 239–254. doi:10.1016/j.aap.2018.10.015
  • Chen, P., & Shen, Q. (2016). Built environment effects on cyclist injury severity in automobile-involved bicycle crashes. Accident Analysis and Prevention, 86, 239–246. doi:10.1016/j.aap.2015.11.002
  • Chimba, D., Musinguzi, A., & Kidando, E. (2018). Associating pedestrians crashes with demographic and socioeconomic factor. Case Studies on Transport Policy, 6(1), 11–16. doi:10.1016/j.cstp.2018.01.006
  • Comunidade Intermunicipal da Região de Aveiro (CIRA). (2012). Plano Municipal de Mobilidade de Aveiro [in portuguese]. Aveiro.
  • Damsere-Derry, J., Palk, G., & King, M. (2017). Road accident fatality risks for “vulnerable” versus “protected” road users in northern Ghana. Traffic Injury Prevention, 18(7), 736–743. doi:10.1080/15389588.2017.1302083
  • Dereli, M. A., & Erdogan, S. (2017). A new model for determining the traffic accident black spots using GIS-aided spatial statistical methods. Transportation Research Part A: Policy and Practice, 103, 106–117. doi:10.1016/j.tra.2017.05.031
  • Dozza, M. (2017). Crash risk: How cycling flow can help explain crash data. Accident Analysis & Prevention, 105, 21–29. doi:10.1016/J.AAP.2016.04.033 doi:10.1016/j.aap.2016.04.033
  • Elvik, R. (2008). State-of-the-art approaches to road accident black spot management and safety analysis of road network. TOI report 883/2007.
  • ERSI - Environmental Sistem Research Institute. (2015). About ArcGIS | Mapping; Analytics Platform. Retrieved from https://www.esri.com/en-us/arcgis/about-arcgis/overview
  • European Comission. (2011). White Paper on transport - Roadmap to a single European transport area - Towards a competitive and resource-efficient transport system.
  • European Commission. (2016). Road safety in The European Union - Trends. Statistics and main Challenges.
  • European Commission. (2018). Pedestrians and cyclists. In European Commission. Directorate General for Transport.
  • Guo, Y., Osama, A., & Sayed, T. (2018). A cross-comparison of different techniques for modeling macro-level cyclist crashes. Accident Analysis and Prevention, 113, 38–46. doi:10.1016/j.aap.2018.01.015
  • IBM Corp. (2016). IBM SPSS Software|IBM Analytics. Retrieved from https://www.ibm.com/analytics/data-science/predictive-analytics/spss-statistical-software
  • INE. (2011). Censos 2011 Resultados Definitivos - Portugal [in portuguese]. Portuguese Statistics Institute.
  • INE. (2017). Estatísticas dos Transportes e Comunicações 2016 [In Portuguese]. Portuguese Statistics Institute.
  • Jia, R., Khadka, A., & Kim, I. (2018). Traffic crash analysis with point-of-interest spatial clustering. Accident Analysis and Prevention, 121, 223–230. doi:10.1016/j.aap.2018.09.018
  • Lee, J., Abdel-Aty, M., & Cai, Q. (2017). Intersection crash prediction modeling with macro-level data from various geographic units. Accident Analysis and Prevention, 102, 213–226. doi:10.1016/j.aap.2017.03.009
  • Liu, C., & Sharma, A. (2018). Using the multivariate spatio-temporal Bayesian model to analyze traffic crashes by severity. Analytic Methods in Accident Research, 17, 14–31. doi:10.1016/j.amar.2018.02.001
  • Loidl, M., Traun, C., & Wallentin, G. (2016). Spatial patterns and temporal dynamics of urban bicycle crashes-A case study from Salzburg (Austria). Journal of Transport Geography, 52, 38–50. doi:10.1016/j.jtrangeo.2016.02.008
  • Lu, T., Mondschein, A., Buehler, R., & Hankey, S. (2018). Adding temporal information to direct-demand models: Hourly estimation of bicycle and pedestrian traffic in Blacksburg, VA. Transportation Research Part D: Transport and Environment, 63, 244–260. doi:10.1016/j.trd.2018.05.011
  • Ma, X., Chen, S., & Chen, F. (2017). Multivariate space-time modeling of crash frequencies by injury severity levels. Analytic Methods in Accident Research, 15, 29–40. doi:10.1016/j.amar.2017.06.001
  • Mannering, F. L., & Bhat, C. R. (2014). Analytic methods in accident research: Methodological frontier and future directions. Analytic Methods in Accident Research, 1, 1–22. doi:10.1016/j.amar.2013.09.001
  • Mohaymany, A. S., Shahri, M., & Mirbagheri, B. (2013). GIS-based method for detecting high-crash-risk road segments using network kernel density estimation. Geo-Spatial Information Science, 16(2), 113–119. doi:10.1080/10095020.2013.766396
  • Prati, G., Pietrantoni, L., & Fraboni, F. (2017). Using data mining techniques to predict the severity of bicycle crashes. Accident Analysis and Prevention, 101, 44–54. doi:10.1016/j.aap.2017.01.008
  • Prato, C. G., Kaplan, S., Patrier, A., & Rasmussen, T. K. (2018). Considering built environment and spatial correlation in modeling pedestrian injury severity. Traffic Injury Prevention, 19(1), 88–93. doi:10.1080/15389588.2017.1329535
  • Senserrick, T., Boufous, S., de Rome, L., Ivers, R., & Stevenson, M. (2014). Detailed analysis of pedestrian casualty collisions in Victoria, Australia. Traffic Injury Prevention, 15(suppl 1), S197–S205. doi:10.1080/15389588.2014.935356
  • Soltani, A., & Askari, S. (2017). Exploring spatial autocorrelation of traffic crashes based on severity. Injury, 48(3), 637–647. doi:10.1016/j.injury.2017.01.032
  • Tiwari, G. (2018). Safety of ‘the vulnerable road users’: Current challenges and need for a new approach. International Journal of Injury Control and Safety Promotion, 25(1), 1–2. doi:10.1080/17457300.2018.1429211
  • Useche, S., Montoro, L., Alonso, F., & Oviedo-Trespalacios, O. (2018). Infrastructural and human factors affecting safety outcomes of cyclists. Sustainability, 10(2), 299. doi:10.3390/su10020299
  • Van Raemdonck, K., & Macharis, C. (2014). The road accident analyzer: A tool to identify high-risk road locations. Journal of Transportation Safety and Security, 6(2), 130–151. doi:10.1080/19439962.2013.826314
  • Wang, J., Huang, H., & Zeng, Q. (2017). The effect of zonal factors in estimating crash risks by transportation modes: Motor vehicle, bicycle and pedestrian. Accident Analysis and Prevention, 98, 223–231. doi:10.1016/j.aap.2016.10.018
  • Weast, R. (2018). Temporal factors in motor-vehicle crash deaths: Ten years later. Journal of Safety Research, 65, 125–131. doi:10.1016/j.jsr.2018.02.011
  • WHO. (2018). Global Status Report on Road Safety 2018. Geneva: World Health Organization.
  • Xie, K., Ozbay, K., & Yang, H. (2019). A multivariate spatial approach to model crash counts by injury severity. Accident Analysis & Prevention, 122, 189–198. doi:10.1016/j.aap.2018.10.009
  • Xie, Z., & Yan, J. (2008). Kernel density estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32(5), 396–406. doi:10.1016/j.compenvurbsys.2008.05.001
  • Yu, H., Liu, P., Chen, J., & Wang, H. (2014). Comparative analysis of the spatial analysis methods for hotspot identification. Accident Analysis and Prevention, 66, 80–88. doi:10.1016/j.aap.2014.01.017
  • Yuan, Q., & Chen, H. (2017). Factor comparison of passenger-vehicle to vulnerable road user crashes in Beijing, China. International Journal of Crashworthiness, 22(3), 260–270. doi:10.1080/13588265.2016.1248226

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.