613
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Quantum confinement effect on trilayer graphene nanoribbon carrier concentration

, , &
Pages 51-63 | Received 25 Feb 2013, Accepted 03 Apr 2013, Published online: 08 Jun 2013

References

  • Zebrev GI. Graphene nanoelectronics: electrostatics and kinetics, Micro. Nanoelectron. 2008;7025:M250–M250.
  • Ahmadi MT, Rahmani M, Ghadiry MH, Ismail R. Monolayer graphene nanoribbon homojunction characteristics. Sci Adv Mater. 2012;4:1–4.
  • Ahmadi MT, Riyadi MA, Saad I, Ismail R.Numerical study of Fermi energy for p-type silicon nanowire. J Nanosci Nanotechnol. 2009;1136:98–102.
  • Lemme MC, Echtermeyer TJ, Baus M, Kurz H. A graphene field-effect devices. Electr. Device. L. 2007;28:282–284.
  • Ahmadi MT, Michael LP, Ismail R, Arora VK. The high-field drift velocity in degenerately-doped silicon nanowires, Int J Nanotechnol. 2009;6:601–617.
  • Rahmani M, Ahmadi MT, Ismail R, Ghadiry MH. Performance of bilayer graphene nanoribbon schottky diode in comparison with conventional diodes. J Comput Theor Nanosci. 2013;10:1–5.
  • Rahmani M, Ahmadi MT, Karimi H, Kiani MJ, Akbari E, Ismail R. Analytical modeling of monolayer graphene-based NO2 sensor. Sens Lett. 2012;
  • Dragoman M, Dragoman D. Graphene-based quantum electronics. Quantum Electron. 2009;33:165–214.
  • Shiro Entani SS, Matsumoto Y, Naramoto H, Hao T, Maeda Y. Interface properties of metal/graphene heterostructures studied by micro-raman spectroscopy. J Phys Chem C. 2010;114:20042–20048.
  • Zhang YT, Jiang H, Sun QF, Xie XC. Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Phys Rev B. 2010;81:165404.
  • Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–162.
  • Ahmadi MT, Johari Z, Aziziah, Amin NA, Zainal N, Ismail R. Band energy effect on carrier velocity limit in graphene nanoribbon. J Exp Nanosci. 2010;7:62–73.
  • Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008;146:351–355.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Field effect in atomically thin carbon films. Science. 2004;306:666–669.
  • Liang G, Neophytou N, Nikonov DE, Lundstrom MS. Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Trans Electron Devices. 2007;54:677–682.
  • Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles MD, Stettler MA, Nikonov DE. Analysis of graphene nanoribbons as a channel material for field-effect transistors, Appl Phys Lett. 2006;88.
  • Rahmani M, Ahmadi MT, Kiani MJ, Ismail R. Monolayer graphene nanoribbon pn junction. J Nanoengineer Nanomanufactur. 2010;2:1–4.
  • Avetisyan AA, Partoens B, Peeters FM. Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys Rev B. 2010;81:115432.
  • Hass J, de Heer WA, Conrad EH. The growth and morphology of epitaxial multilayer graphene. J Phys-Condens Matter. 2008;20: 323202.
  • Terronesa M, Botello-Méndezb A, Delgadoc JC. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today. 2010;5:351–372.
  • Koshino M, McCann E. Parity and valley degeneracy in multilayer graphene. Phys Rev B. 2010;81:
  • Guinea F, Castro Neto AH, Peres NMR. Interaction effects in single layer and multi-layer graphene. Eur Phys J-Spec Topics. 2007;148:117–125.
  • Yuan S, Raedt HD, Katsnelson MI. Electronic transport in disordered bilayer and trilayer graphene. Phys Rev B. 2010;82:235409.
  • Aoki M, Amawashi H. Dependence of band structures on stacking and field in layered graphene. Solid State Commun. 2007;142:123–127.
  • Koshino M. Interlayer screening effect in graphene multilayers with ABA and ABC stacking. Phys Rev B. 2010;81:125304.
  • Zhang F, Sahu B, Min H, MacDonald AH. Band structure of ABC-stacked graphene trilayers. Phys Rev B. 2010;82:035409.
  • Craciun MF, Russo S, Yamamoto M, Tarucha S. Tuneable electronic properties in graphene. Nano Today Press. 2011;6:42–60.
  • Appenzeller J, Sui Y, Chen ZH. Graphene nanostructures for device applications, Symposium on Vlsi Technology, Digest of Technical Papers. Honolulu, HI, 2009;124–126.
  • Koshino M, McCann E. Gate-induced interlayer asymmetry in ABA-stacked trilayer graphene, Phys Rev B. 2009;79:125443.
  • Chang CP, Lu CL, Shyu FL, Chen RB, Huang YC, Lin MF. Magnetoelectronic properties of the AB-stacked graphite. Carbon. 2005;43:1424–1431.
  • Leenaerts O. An ab initio study of the adsorption of atoms and molecules graphene. Universiti Antwerpen te verdedigen door Antwerpen, Belgium 2010.
  • Datta S. Quantum Transport: Atom to Transistor. New York: Cambridge University Press. 2005. p. 113–114.
  • Ahmadi MT, Tan LP, Ismail R, Arora VK. The high-field drift velocity in degenerately-doped silicon nanowires. Nanotechnology. 2009;6:601–617.
  • Guinea F, Castro Neto AH, Peres NMR. Electronic states and Landau levels in graphene stacks. Phys. Rev. B. 2006;73:245426.
  • Rahmani M, Ahmadi MT, Ghadiry MH, Anwar S, Ismail R. The effect of applied voltage on the carrier effective mass in ABA trilayer graphene nanoribbon. J Comput Theoret Nanosci. 2012;9:1618–1621.
  • Arora VK. Failure of Ohm's law: its implications on the design of nanoelectronic devices and circuits. Proc IEEE Int Conf Microelectron. 2006;14:15–22.
  • Rahmani M. In : Ismail R, Ahmadi MT and Anwar S, editors. Advanced Nanoelectronics. Chapter 8; Trilayer Graphene Nanoribbon Field Effect Transistor Modeling, Boca Raton: Taylor & Francis. 2010; p. 207--237.
  • Amin NA, Ahmadi MT, Johari Z, Mousavi SM, Ismail R. Effective mobility model of graphene nanoribbon in parabolic band energy. Mod Phys Lett B. 2011;25:739–745.
  • Johari Z, Ahmdi MT, Chang DC, Yih, Amin NA, Ismail R. Modelling of graphene nanoribbon fermi energy. J Nanomater. 2010:6.
  • Mousavi SM, Ahmadi MT, Sadeghi H, Nilghaz A, Amin A, Johari Z, Ismail R. Bilayer graphene nanoribbon carrier statistic in degenerate and non degenerate limit. J Comput Theor Nanosci. 2011;8:2029–2032.
  • Saeidmanesh M, Ismail R, Ahmadi MT, Ghadiry MH, Akbari E. Perpendicular electric field effect on bilayer graphene carrier statistic. J Comput Theor Nanosci, forthcoming.
  • Moor Gordon E. Cramming more components onto integrated circuits. Electronics. 1965; 86:82--85.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.