2,608
Views
48
CrossRef citations to date
0
Altmetric
Original Articles

Green synthesis of silver nanoparticles from purple acid phosphatase apoenzyme isolated from a new source Limonia acidissima

, , , &
Pages 28-37 | Received 08 Oct 2014, Accepted 26 Feb 2015, Published online: 27 Mar 2015

References

  • Younes A, Abdeslam EB, Hafid A, Khalid B, Jamal M. Microwave-assisted approach for rapid and green synthesis of silver nanoparticles using aqueous onion (Allium cepa) and their antimicrobial activity. J Nanostruct Chem. 2013;3:84–90.
  • Sreeram KJ, Nidhin M, Nair BU. Microwave assisted template synthesis of silver nanoparticles. Bull Mater Sci. 2008;31:937–942.
  • Ahamed M, AlSalhi MS, Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta. 2010;411:1841–1848.
  • Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32:4704–4713.
  • Samal S, Jeyaraman P, Vishwakarma V. Sonochemical coating of Ag-TiO2 nanoparticles on textile fabrics for stain repellency and self-cleaning- the Indian scenario: a review. J Minerals Mater Characterization Eng. 2010;9:519–525.
  • Kim S, Kuk E, Yu K, Kim J, Park S, Lee H. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.
  • Tan Y, Dai Y, Li Y, Zhua D. Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. J Mater Chem. 2003;13:1069–1075.
  • Mukunathan K, Elumalai E, Patel T, Murty V. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed. 2011;1:270–274.
  • Klaus T, Joerger R, Olsson E, Granqvist C. Silver-based crystalline nanoparticles, microbially fabricated. J Proc Natl Acad Sci USA. 1999;96:13611–13614.
  • Konishi Y, Uruga T. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol. 2007;128:648–653.
  • Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Des. 2001;2:293–298.
  • Willner I, Baron R, Willner B. Growing metal nanoparticles by enzymes. J Adv Mater. 2006;18:1109–1120.
  • Waghmode S, Chavan P, Kalyankar V, Dagade S. Synthesis of silver nanoparticles using Triticum aestivum and its effect on peroxide catalytic activity and toxicology. J Chem. 2013;2013:5–10.
  • Dubey S, Lahtinen M, Sarkka H, Sillanpaa M. Bio-prospective of Sorbus aucuparia leaf extract in development of silver and gold nanocollides. Colloids Surfaces B. 2010;80:26–33.
  • Dwivedi A, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surfaces A. 2010;369:27–33.
  • Shankar S, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog. 2003;19:1627–1631.
  • Klabunde T, Stahl B, Suerbaum H, Hahner S, Karas M, Hillenkamp F, Krebs B, Witze H. The amino acid sequence of the red kidney bean Fe(III)-Zn(II) purple acid phosphatase. Determination of the amino acid sequence by a combination of matrix-assisted laser desorptiodionization mass spectrometry and automated Edman sequencing. Eur J Biochem. 1994;226:369–375.
  • Upadhya S, Shanbhag K, Suneetha G, Naidu B. A study of hypoglycemic and antioxidant activity of Aegle marmelos in alloxan induced diabetic rats. Ind J Physiol Pharmacol. 2004;48:476–480.
  • Singanan V, Singanan M, Begum H. The hepatoprotective effect of bael leaves (Aegle marmelos) in alcohol induced liver injury in albino rats. Int J Sci Technol. 2007;2:83–92.
  • Patil R, Chaudhary B, Settipalli S. Antifungal and antiaflatoxigenic activity of Aegle marmelos. Linn Pharmacog J. 2009;1:298–301.
  • Schenk G, Ge Y, Carringto L, Wynne C, Searle I, Carroll B, Hamilton S, De-Jersey J. Binuclear metal centres in plant purple acid phosphatases: Fe–Mn in sweet potato and Fe–Zn in soybean. Arch Biochem Biophys. 1999;370:183–189.
  • Durmus A, Eicken C, Sift B, Kratel A, Kappl R, Huttermann J, Krebs B. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas). Eur J Biochem. 1999;260:709–716.
  • Bozzo G, Raghotham K, Plaxton W. Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Eur J Biochem. 2002;269:6278–6286.
  • Zimmermann P, Regierer B, Kossmann J, Frossard E, Amrhein N, Bucher M. Differential expression of three purple acid phosphatase from potato. Plant Biol. 2004;6:519–528.
  • Averill B, Merkx M. The activity of oxidized bovine spleen purple acid phosphatase is due to an Fe(III)-Zn(II) ‘impurity’. Biochemistry. 1998;37:11223–11231.
  • Lowrey O, Rosebrough N, Farr L, Randall R. Protein measurement with the Folin phenol reagent. J Biochem. 1951;193:265–275.
  • Dubois M, Gilles K, Hamilton J, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–356.
  • Klabunde T, Strater N, Frohlich R, Witzel H, Kreb B. Mechanism of Fe(III)–Zn(II) purple acid phosphatase based on crystal structure. J Mol Biol. 1996;259:737–748.
  • Antanaitis B, Aisen P, Lilienthal H. Physical characterization of two-iron uteroferrin. J Biol Chem. 1983;258:3166–3172.
  • Kaida R, Serada S, Norioka N, Norioka S, Neumetzler L, Pauly M, Sampedro J, Zarra I, Hayashi T, Kaneko T. Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells. Plant Physiol. 2010;153:603–610.
  • del Pozo J, Allona I, Rubio V, Leyva A, del la Pena A, Aragoncillo C, Paz-Ares J. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilizing/oxidative stress condition. Plant J. 1999;19:579–589.
  • Nuttleman P, Roberts R. Transfer of iron from uteroferrin (purple acid phosphatase) to transferrin related to acid phosphatase activity. J Biol Chem. 1990;265:12192–12199.
  • Ek-Rylander B, Flores M, Wendel M, Heinegards D, Andersson G. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. J Biol Chem. 1994;269:14853–14856.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.