1,695
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Gold nanoparticles and ions – friends or foes? As they are seen by human cells U-937 and HL-60

&
Pages 564-580 | Received 11 May 2015, Accepted 14 Sep 2015, Published online: 13 Oct 2015

References

  • Oberdörster G, Sharp Z, Atudorei V, et al. Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicol. 2004;16(6–7):437–445. doi:10.1080/08958370490439597
  • Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B. 2008;66(2):274–280. doi:10.1016/j.colsurfb.2008.07.004
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44. doi:10.1038/nature01451
  • Alkilany AM, Murphy C J. Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanoparticle Res. 2010;12(7):2313–2333. doi:10.1007/s11051-010-9911-8
  • Rashid MH, Bhattacharjee RR, Kotal A, et al. Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir. 2006;22(17):7141–7143. doi:10.1021/la060939j
  • Connor EE, Mwamuka J, Gole A, et al. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small. 2005;1(3):325–327. doi:10.1002/smll.200400093
  • Pernodet N, Fang X, Sun Y, et al. Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small. 2006;2(6):766–773. doi:10.1002/smll.200500492
  • Yi H, Leunissen JL, Shi GM, et al. A novel procedure for pre-embedding double immunogold–silver labeling at the ultrastructural level. J Histochem Cytochem. 2001;49(3):279–283. doi:10.1177/002215540104900301
  • Tkachenko AG, Xie H, Liu Y, et al. Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Biocon Chem. 2004;15(3):482–490. doi:10.1021/bc034189q
  • Rosi NL, Giljohann DA, Thaxton CS, et al. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science. 2006;312(5776):1027–1030. doi:10.1126/science.1125559
  • Finkelstein AE, Walz DT, Batista V, et al. Auranofin. New oral gold compound for treatment of rheumatoid arthritis. Ann Rheumatic Diseases. 1976;35(3):251–257. doi:10.1136/ard.35.3.251
  • Metz O, Stoll W, Plenert W. Meningosis prophylaxis with intrathecal 198Au‐colloid and methotrexate in childhood acute lymphocytic leukemia. Cancer. 1982;49(2):224–228. doi:10.1002/1097-0142(19820115)49:2<224
  • El-Sayed IH, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 2005;5(5):829–834. doi:10.1021/nl050074e
  • Mitchell LA, Gao J, Vander Wal R, et al. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 2007;100(1):203–214. doi:10.1093/toxsci/kfm196
  • Chou CC, Hsiao HY, Hong QS, et al. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 2008;8(2):437–445. doi:10.1021/nl0723634
  • Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109(29):13857–13870. doi:10.1021/jp0516846
  • Grzelczak M, Pérez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chem Soc Rev. 2008;37(9):1783–1791. doi:10.1039/B711490G
  • Jain PK, Huang X, El-Sayed IH, et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 2008;41(12):1578–1586. doi:10.1021/ar7002804
  • Skrabalak SE, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications. Acc Chem Res. 2008;41(12):1587–1595. doi:10.1021/ar800018v
  • Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta. 2007;598(2):181–192. doi:10.1016/j.aca.2007.07.054
  • Sundström C, Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U‐937). Int J Cancer. 1976;17(5):565–577. doi:10.1002/ijc.2910170504
  • Gallagher R, Collins S, Trujillo J, et al. Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979;54(3):713–733.
  • Oćwieja M, Adamczyk Z, Morga M, et al. High density silver nanoparticle monolayers produced by colloid self-assembly on polyelectrolyte supporting layers. J Colloid Interface Sci. 2011;364:39–48. doi:10.1016/j.jcis.2011.07.059
  • Murao SI, Gemmell MA, Callaham MF, et al. Control of macrophage cell differentiation in human promyelocytic HL-60 leukemia cells by 1, 25-dihydroxyvitamin D3 and phorbol-12-myristate-13-acetate. Cancer Res. 1983;43(10):4989–4996.
  • Collins SJ. The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression. Blood. 1987;70(5):1233–1244.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4
  • Chen F, Kuhn DC, Sun SC, et al. Dependence and reversal of nitric oxide production on NF-κ-B in silica and lipopolysaccharide induced macrophages. Biochem Biophys Res Commun. 1995;214(3):839–846. doi:10.1006/bbrc.1995.2363
  • Ellman GL. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys. 1958;74(2):443–450. doi:10.1016/0003-9861(58)90014-6
  • Bubniene U, Oćwieja M, Bugelyte B, et al. Deposition of gold nanoparticles on mica modified by poly(allylamine hydrochloride) monolayers. Colloids Surf A. 2014;441:204–210. doi:10.1016/j.colsurfa.2013.08.058
  • Unfried K, Albrecht C, Klotz LO, et al. Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology. 2007;1(1):52–71. doi:10.1080/00222930701314932
  • Aillon KL, Xie Y, El-Gendy N, et al. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev. 2009;61(6):457–466. doi:10.1016/j.addr.2009.03.010
  • Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067–2076. doi:10.1002/smll.200900466
  • Shukla R, Bansal V, Chaudhary M, et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir. 2005;21(23):10644–10654. doi:10.1021/la0513712
  • Villiers CL, Freitas H, Couderc R, et al. Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanoparticle Res. 2010;12(1):55–60. doi:10.1007/s11051-009-9692-0
  • Goodman CM, McCusker CD, Yilmaz T, et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Biocon Chem. 2004;15(4):897–900. doi:10.1021/bc049951i
  • Hemingway RW, Laks PE, Branham SJ. Plant polyphenols: synthesis, properties. Significance. 1992;59:429–432. doi:10.1007/978-1-4615-3476-1
  • Liao J, Zhang Y, Yu W, et al. Linear aggregation of gold nanoparticles in ethanol. Colloids Surf A. 2003;223(1):177–183. doi:10.1016/S0927-7757(03)00156-0
  • Sivaraman SK, Kumar S, Santhanam V. Room-temperature synthesis of gold nanoparticles – size-control by slow addition. Gold Bull. 2010;43(4):275–286. doi:10.1007/BF03214997
  • Sivaraman SK, Elango I, Kumar S, et al. A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci. 2009;97(7):1055–1059.
  • Dadosh T. Synthesis of uniform silver nanoparticles with a controllable size. Mat Lett. 2009;63(26):2236–2238. doi:10.1016/j.matlet.2009.07.042
  • Dutta A, Dolui SK. Tannic acid assisted one step synthesis route for stable colloidal dispersion of nickel nanostructures. Appl Surf Sci. 2011;257(15):6889–6896. doi:10.1016/j.apsusc.2011.03.025
  • Sánchez-Moreno C, Larrauri JA, Saura-Calixto F. Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int. 1999;32(6):407–412. doi:10.1016/S0963-9969(99)00097-6
  • Khan NS, Ahmad A, Hadi SM. Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem Biol Interact. 2000;125:177–189. doi:10.1016/S0009-2797(00)00143-5
  • Chung KT, Wong TY, Wei CI, et al. Tannins and human health: a review. Crit Rev Food Sci Nutr. 1998;38:421–464. doi:10.1080/10408699891274273
  • Akiyama H, Fujii K, Yamasaki O, et al. Antibacterial action of several tannins against Staphylococcus aureus. J Antimicrobial Chemother. 2001;48(4):487–491. doi:10.1093/jac/48.4.487
  • Kim TJ, Silva JL, Kim MK, et al. Enhanced antioxidant capacity and antimicrobial activity of tannic acid by thermal processing. Food Chem. 2010;118(3):740–746. doi:10.1016/j.foodchem.2009.05.060
  • Kim TJ, Silva JL, Jung YS. Enhanced functional properties of tannic acid after thermal hydrolysis. Food Chem. 2011;126(1):116–120. doi:10.1016/j.foodchem.2010.10.086
  • Ralph P, Moore MA, Nilsson K. Lysozyme synthesis by established human and murine histiocytic lymphoma cell lines. J Exp Med. 1976;143(6):1528–1533.
  • Harris P, Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukocyte Biol. 1985;37(4):407–422.
  • Minta JO, Pambrun L. In vitro induction of cytologic and functional differentiation of the immature human monocytelike cell line U-937 with phorbol myristate acetate. Am J Pathol. 1985;119(1):111–126.
  • Olsson I, Gullberg U, Ivhed I, et al. Induction of differentiation of the human histiocytic lymphoma cell line U-937 by 1α, 25-dihydroxycholecalciferol. Cancer Res. 1983;43(12):5862–5867.
  • Olins AL, Herrmann H, Lichter P, et al. Retinoic acid differentiation of HL-60 cells promotes cytoskeletal polarization. Exp Cell Res. 2000;254(1):130–142. doi:10.1006/excr.1999.4727
  • Ip SH, Cooper RA. Decreased membrane fluidity during differentiation of human promyelocytic leukemia cells in culture. Blood. 1980;56(2):227–232.
  • Barbasz A, Oćwieja M. Cytotoxic activity of highly purified silver nanoparticles sol against cells of human immune system. Appl Biochem Biotechnol. 2015;176(3):817–834. doi:10.1007/s12010-015-1613-3
  • Hamiza OO, Rehman MU, Tahir M, et al. Amelioration of 1,2 dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in Wistar rats. Asian Pac J Cancer Prev. 2012;13:4393–4402. doi:10.7314/APJCP.2012.13.9.4393
  • Khan NS, Ahmad A, Hadi SM. Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chemico-Biol Interac. 2000;125(3):177–189. doi:10.1016/S0009-2797(00)00143-5
  • Koleckar V, Kubikova K, Rehakova Z, et al. Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Rev Med Chem. 2008;8:436–447. doi:10.2174/138955708784223486
  • Serrano J, Puupponen-Pimia R, Dauer A, et al. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res. 2009;53:S310–S329. doi:10.1002/mnfr.200900039
  • Buzzini P, Arapitsas P, Goretti M, et al. Antimicrobial and antiviral activity of hydrolysable tannins. Mini Rev Med Chem. 2008;8:1179–1187. doi:10.2174/138955708786140990
  • Payne DE, Martin NR, Parzych KR, et al. Tannic acid inhibits Staphylococcus aureus surface colonization in an IsaA dependent manner. Infect Immun. 2013;81:496–504. doi:10.1128/IAI.00877-12
  • Holderness J, Hedges JF, Daughenbaugh K, et al. Response of gammadelta T Cells to plant-derived tannins. Crit Rev Immunol. 2008;28:377–402. doi:10.1615/CritRevImmunol.v28.i5.20
  • Chang TL, Wang CH. Combination of quercetin and tannic acid in inhibiting 26S proteasome affects S5a and 20S expression and accumulation of ubiquitin resulted in apoptosis in cancer chemoprevention. Biol Chem. 2012;5(11 Supplement):A59–A59. doi:10.1515/hsz-2012-0277
  • Chen KS, Hsiao YC, Kuo DY, et al. Tannic acid-induced apoptosis and -enhanced sensitivity to arsenic trioxide in human leukemia HL-60 cells. Leuk Res. 2009;33:297–307. doi:10.1016/j.leukres.2008.08.006
  • Khan NS, Hadi SM. Structural features of tannic acid important for DNA degradation in the presence of Cu(II). Mutagenesis. 1998;13:271–274. doi:10.1093/mutage/13.3.271
  • Sun Y, Zhang T, Wang B, et al. Tannic acid, an inhibitor of poly(ADP-ribose) glycohydrolase, sensitizes ovarian carcinoma cells to cisplatin. Anticancer Drugs. 2012;23:979–990. doi:10.1097/CAD.0b013e328356359f
  • Persillin RM, Ziff M. The effect of gold salt on lysosomal enzymes of the peritoneal macrophage. Arthritis Rheum. 1966;9,57–65. doi:10.1002/art.1780090107
  • Hostynek JJ. Gold: an allergen of growing significance. Food Chem Toxicol. 1997;35(8):839–844. doi:10.1016/S0278-6915(97)00058-6
  • Danscher G. In vivo liberation of gold ions from gold implants. Autometallographic tracing of gold in cells adjacent to metallic gold. Histochem Cell Biol. 2002;117(5):447–452. doi:10.1007/s00418-002-0400-8
  • Park EJ, Yi J, Kim Y, et al. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol Vitro. 2010;24(3):872–878. doi:10.1016/j.tiv.2009.12.001
  • Möhlen KH, Beller FK. Use of radioactive gold in the treatment of pleural effusions caused by metastatic cancer. J Cancer Res Clin Oncol. 1979;94(1):81–85. doi:10.1007/BF00405352
  • Rosenberg SJ, Loening SA, Hawtrey CE, et al. Radical prostatectomy with adjuvant radioactive gold for prostatic cancer: a preliminary report. J Urol. 1985;133(2):225–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.