2,958
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density

, &
Pages 630-649 | Received 15 Mar 2015, Accepted 07 Oct 2015, Published online: 05 Nov 2015

References

  • Eastman JA, Choi SUS, Li S, et al. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett. 2001;78:718–720.
  • Choi SUS, Zhang ZG, Yu W, et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252–2254.
  • Pastoriza-Gallego MJ, Lugo L, Legido JL, et al. Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Res Lett. 2011;6:221–231.
  • Timofeeva EV, Gavrilov AN, Mccloskey JM, et al. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76:1–16.
  • Amrollahi A, Hamidi A, Rashidi A. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid). Nanotechnology. 2008;19:315701.
  • Liu M, Lin MC, Huang I, et al. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Int Commun Heat Mass Transf. 2005;32:1202–1210.
  • Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47:560–568.
  • Wang X, Xu X, Choi SU. Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transf. 1999;13:474–480.
  • Li Y, Zhou J, Tung S, et al. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196:89–101.
  • Ghadimi A, Saidur R, Metselaar HSC. A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf. 2011;54:4051–4068.
  • Hwang Y, Lee J-K, Lee J-K, et al. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2008;186:145–153.
  • Fedele L, Colla L, Bobbo S, et al. Experimental stability analysis of different water-based nanofluids. Nanoscale Res Lett. 2011;6:300–307.
  • Chung SJJ, Leonard JPP, Nettleship I, et al. Characterization of ZnO nanoparticle suspension in water: effectiveness of ultrasonic dispersion. Powder Technol. 2009;194:75–80.
  • Amrollahi A, Rashidi AM, Emami Meibodi M, et al. Conduction heat transfer characteristics and dispersion behaviour of carbon nanofluids as a function of different parameters. J Exp Nanosci. 2009;4:347–363.
  • Abareshi M, Sajjadi SH, Zebarjad SM, et al. Fabrication, characterization, and measurement of viscosity of α-Fe2O3–glycerol nanofluids. J Mol Liq. 2011;163:27–32.
  • Lee J-H, Hwang KS, Jang SP, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–2656.
  • Sahoo BC, Vajjha RS, Ganguli R, et al. Determination of rheological behaviour of aluminium oxide nanofluid and development of new viscosity correlations. Pet Sci Technol. 2009;27:1757–1770.
  • Kole M, Dey TK. Effect of aggregation on the viscosity of copper oxide-gear oil nanofluids. Int J Therm Sci. 2011;50:1741–1747.
  • Duangthongsuk W, Wongwises S. Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids. Exp Therm Fluid Sci. 2009;33:706–714.
  • Karthikeyan NR, Philip J, Raj B. Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys. 2008;109:50–55.
  • Hong TT-K, Yang HH-S, Choi CJ. Study of the enhanced thermal conductivity of Fe nanofluids. J Appl Phys. 2005;97:064311.
  • Yu W, Xie H, Chen L, et al. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta. 2009;491:92–96.
  • Hong KS, Hong T-K, Yang H-S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Appl Phys Lett. 2006;88:031901.
  • Suganthi K, Anusha N, Rajan K. Low viscous ZnO–propylene glycol nanofluid: a potential coolant candidate. J Nanopart Res. 2013. doi:10.1007/s11051-013-1986-6.
  • Garg P, Alvarado JL, Marsh C, et al. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–5101.
  • Yu W, Xie H. A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater. 2012;2012:1–17.
  • Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon NY. 2005;43:1378–1385.
  • Wamkam CT, Opoku MK, Hong H, et al. Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles. J Appl Phys. 2011;109:024305.
  • Taurozzi, JS, Hackley VA, Wiesner MR. Ceint/nist protocol for preparation of nanoparticle dispersions from powdered material using ultrasonic disruption. Gaithersburg (MD): National Institute of Standards and Technology and Durham (NC): Department of Civil and Environmental Engineering; 2010.
  • Ghadimi A, Metselaar I. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Therm Fluid Sci. 2013;51:1–9.
  • Lee SW, Park SD, Kang S, et al. Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications. Int J Heat Mass Transf. 2011;54:433–438.
  • Mehrali M, Sadeghinezhad E, Latibari ST, et al. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Res Lett. 2014;9:15.
  • Piriyawong V, Thongpool V, Asanithi P, et al. Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J Nanomater. 2012;2012:1–6.
  • Segur J, Oberstar H. Viscosity of glycerol and its aqueous solutions. Ind Eng Chem. 1951;43:2117–2120.
  • Miner CS, Dalton, NN. Glycerol. ACS monograph series. New York (NY): Reinhold Publishing Company; 1953.
  • Kulkarni DPD, Namburu PPK, Ed Bargar H, et al. Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transf Eng. 2008;29:1027–1035.
  • Meyer JP, Adio SA, Sharifpur M, et al. The viscosity of nanofluids: a review of the theoretical, empirical and numerical models. Heat Transf Eng. 2016; 37:387–421.
  • Garg J, Poudel B, Chiesa M, et al. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys. 2008;103:074301.
  • Enomoto N, Maruyama S, Nakagawa Z. Agglomeration of silica spheres under ultrasonication. J Mater Res. 1997:1410–1415.
  • Suganthi KS, Rajan KS. Temperature induced changes in ZnO–water nanofluid: zeta potential, size distribution and viscosity profiles. Int J Heat Mass Transf. 2012;55:7969–7980.
  • Kole M, Dey TK. Thermophysical and pool boiling characteristics of ZnO–ethylene glycol nanofluids. Int J Therm Sci. 2012;62:61–70.
  • Chong J, Christiansen E, Baer A. Rheology of concentrated suspensions. J Appl Polym Sci. 1971;15:2007–2021.
  • Dames B, Morrison BR, Willenbacher N. An empirical model predicting the viscosity of highly concentrated, bimodal dispersions with colloidal interactions. Rheol Acta. 2001;40:434–440.
  • Bobbo S, Fedele L, Benetti A, et al. Viscosity of water based SWCNH and TiO2 nanofluids. Exp Therm Fluid Sci. 2012;36:65–71.
  • Ghazvini M, Akhavan-Behabadi Ma, Rasouli E, et al. Heat transfer properties of nanodiamond–engine oil nanofluid in laminar flow. Heat Transf Eng. 2012;33:525–532.
  • Xie H, Yu W, Chen W. MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J Exp Nanosci. 2010;5:463–472.
  • Hemmat Esfe M, Saedodin S. An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci. 2014;55:1–5.
  • Horri BA, Ranganathan P, Selomulya C, et al. A new empirical viscosity model for ceramic suspensions. Chem Eng Sci. 2011;66:2798–2806.
  • Anoop KB, Kabelac S, Sundararajan T, et al. Rheological and flow characteristics of nanofluids: influence of electro-viscous effects and particle agglomeration. J Appl Phys. 2009;106:034909.
  • Timofeeva EV, Smith DS, Yu W, et al. Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based alpha-SiC nanofluids. Nanotechnology. 2010;21:215703.
  • Jia-Fei Z, Zhong-Yang L. Dependence of nanofluid viscosity on particle size and pH value. Chinese Phys Lett. 2009;26:10–13.
  • Cheng Q, Debnath S, Gregan E, et al. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. J Phys Chem. 2010;114:8821–8827.
  • Elimelech M, Gregory J, Jia X, et al. Particle deposition and aggregation. Woburn (MA): Butterworth-Heinemann; 1995.
  • Cļengel Y. Heat and mass transfer: a practical approach. 3rd ed. New York (NY): McGraw-Hill; 2007.
  • Birdi K, editor. Handbook of surface and colloid chemistry. 2nd ed. Boca Raton (FL): CRC Press LLC; 2003.
  • Akerlof G. Dielectric constants of some organic solvent–water mixtures at various temperatures. J Am Chem Soc. 1932;54:4125–4139.
  • Young K, Frederikse H. Compilation of the static dielectric constant of inorganic solids. J Phys Chem Ref Data. 1973;2:313–409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.