1,938
Views
11
CrossRef citations to date
0
Altmetric
Articles

Tip and inner walls modification of single-walled carbon nanotubes (3.5 nm diameter) and preparation of polyamide/modified CNT nanocomposite reverse osmosis membrane

, , , , &
Pages 11-26 | Received 21 Mar 2017, Accepted 07 Nov 2017, Published online: 19 Dec 2017

References

  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
  • Dervishi E, Li Z, Xu Y, et al. Carbon nanotubes: synthesis, properties, and applications. Parti Sci Technol. 2009;27:107–125.
  • Heller I, Kong J, Heering HA, et al. Individual single-walled carbon nanotubes as nanoelectrodes for electrochemistry. Nano Lett. 2005;5:137–142.
  • Stoner BR, Brown B, Glass JT. Selected topics on the synthesis, properties and applications of multiwalled carbon nanotubes. Diam Relat Mater. 2014;42:49–57.
  • Ajayan PM. Nanotubes from carbon. Chem Rev. 1999;99:1787–1800.
  • Williams KA, Veenhuizen TMP, de la Torre BG, et al. Nanotechnology: carbon nanotubes with DNA recognition. Nature. 2002;420:761.
  • Battigelli A, Menard-Moyon C, Da Ros T, et al. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev. 2013;65:1899–1920.
  • Tarfaoui M, Lafdi K, El Moumen A. Mechanical properties of carbon nanotubes based polymer composites. Compos B. 2016;103:113–121.
  • Di Giacomo R, Maresca B, Angelillo M, et al. Bio-nano-composite materials constructed with single cells and carbon nanotubes: mechanical, electrical, and optical properties. IEEE Trans Nanotechnol. 2013;12:1026–1030.
  • Kotsilkova R, Ivanov E, Krusteva E, et al. Isotactic polypropylene composites reinforced with multiwall carbon nanotubes, part 2: Thermal and mechanical properties related to the structure. J Appl Polym Sci. 2010;115:3576–3585.
  • Kyotani T, Nakazaki S, Xu W-H, et al. Chemical modification of the inner walls of carbon nanotubes by HNO3 oxidation. Carbon. 2001;39:782–785.
  • Gromov A, Dittmer S, Svensson J, et al. Covalent amino-functionalisation of single-wall carbon nanotubes. J Mater Chem. 2005;15:3334.
  • Jing-zhi Z, Jian H, Fei-peng D. Modification of carbon nanotubes with sodium p-aminobenzenesulfonate and its effect on Cu2+ adsorption. New Carbon Mater. 2013;28:14–19.
  • Kanbur Y, Küçükyavuz Z. Surface Modification and Characterization of Multi-Walled Carbon Nanotube. Fullerene Nanotubes Carbon Nanostruct. 2011;19:497–504.
  • Zhang L, Shi G-Z, Qiu S, et al. Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalin Water Treat. 2011;34:19–24.
  • He ZH, Gao GB, Zhang YM. Modification and dispersion of multi-walled carbon nanotubes in water. Russ J Phys Chem. 2014;88:1191–1195.
  • Kathi J, Rhee KY. Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci. 2008;43:33–37.
  • Sawicki R, Mercier L. Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ Sci Technol. 2006;40:1978–1983.
  • Hattori Y, Watanabe Y, Kawasaki S, et al. Carbon-alloying of the rear surfaces of nanotubes by direct fluorination. Carbon. 1999;37:1033–1038.
  • Jung C-H, Kim D-K, Choi J-H. Surface modification of multi-walled carbon nanotubes by radiation-induced graft polymerization. Curr Appl Phys. 2009;9:S85–S87.
  • Saito T, Matsushige K, Tanaka K. Chemical treatment and modification of multi-walled carbon nanotubes. Physica B. 2002;323:280–283.
  • Darabi HR, Jafar Tehrani M, Aghapoor K, et al. A new protocol for the carboxylic acid sidewall functionalization of single-walled carbon nanotubes. Appl Surf Sci. 2012;258:8953–8958.
  • Tiwari JN, Tiwari RN, Chang YM, et al. A promising approach to the synthesis of 3D nanoporous graphitic carbon as a unique electrocatalyst support for methanol oxidation. ChemSusChem. 2010;3:460–466.
  • Tiwari JN, Kemp KC, Nath K, et al. Interconnected Pt-nanodendrite/DNA/reduced-graphene-oxide hybrid showing remarkable oxygen reduction activity and stability. ACS Nano. 2013;7:9223–9231.
  • Verweij H, Schillo MC, Li J. Fast mass transport through carbon nanotube membranes. Small. 2007;3:1996–2004.
  • Zhao H, Qiu S, Wu L, et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J Membr Sci. 2014;450:249–256.
  • Li Q, Yang DF, Shi JS, et al. Biomimetic modification of large diameter carbon nanotubes and the desalination behavior of its reverse osmosis membrane. Desalination. 2016;379:164–171.
  • Li Q, Yang DF, Wang JH, et al. Biomimetic modification and desalination behavior of (15,15) carbon nanotubes with a diameter larger than 2 nm. Acta Phys -Chim Sin. 2016;32(X):001–009.
  • Lee KP, Arnot TC, Mattia D. A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Membr Sci. 2011;370:1–22.
  • Huang H, Qu X, Dong H, et al. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane. RSC Adv. 2013;3:8203.
  • Yang J-Y, Shi T-J, Jin W-Y, et al. Modification of multi-walled carbon nanotubes with p-Aminobenzenesulfonic acid by a two-step method. Acta Chim Sin. 2008;66:552–556.
  • Cao Z, Qiu L, Yang Y, et al. The effects of surface modifications of multiwalled carbon nanotubes on their dispersibility in different solvents and poly(ether ether ketone). J Mater Res. 2014;29:2625–2633.