13,099
Views
127
CrossRef citations to date
0
Altmetric
Articles

Nanoparticle–membrane interactions

, , &
Pages 62-81 | Received 03 Aug 2017, Accepted 29 Nov 2017, Published online: 22 Dec 2017

References

  • Gottschalk F. Nowack B. The release of engineered nanomaterials to the environment. J Environ Monit. 2011;13(5):1145–1155.
  • Garner KL, Keller AA. Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanoparticle Res. 2014;16(8):2503.
  • Colvin VL. The potential environmental impact of engineered nanomaterials. Nat Biotechnol. 2003;21(10):1166–1170.
  • Malysheva A, Lombi E, Voelcker NH. Bridging the divide between human and environmental nanotoxicology. Nat Nanotechnol. 2015;10(10):835–844.
  • Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–627.
  • EU NanoSafety cluster – about the NanoSafety cluster. Available from: https://www.nanosafetycluster.eu/.
  • Shaffer RE, Rengasamy S. Respiratory protection against airborne nanoparticles: a review. J Nanoparticle Res. 2009;11(7):1661.
  • Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhalation Toxicol. 2012;24(2):125–135.
  • Souza VGL, Fernando AL. Nanoparticles in food packaging: biodegradability and potential migration to food – a review. Food Packag Shelf Life. 2016;8:63–70.
  • He X, Hwang H-M. Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal. 2016;24(4):671–681.
  • Cristina B, Ivan IP, Kevin R. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR71.
  • Kendall M, Lynch I. Long-term monitoring for nanomedicine implants and drugs. Nat Nanotechnol. 2016;11(3):206–210.
  • Scharf B, Clement CC, Zolla V, et al. Molecular analysis of chromium and cobalt-related toxicity. Sci Rep. 2014;4:5729.
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–149.
  • Lohse S. Nano contaminants: how nanoparticles get into the environment. Sustainable Nano 2014, May 13. Available from: https://sustainable-nano.com/2014/05/13/nano-contaminants-how-nanoparticles-get-into-the-environment/
  • Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut. 2007;150(1):5–22.
  • Sajid M, Ilyas M, Basheer C, et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut Res. 2015;22(6):4122–4143.
  • Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009;8(7):543–557.
  • Joris F, Manshian BB, Peynshaert K, et al. Assessing nanoparticle toxicity in cell-based assays: influence of cell culture parameters and optimized models for bridging the in vitro–in vivo gap. Chem Soc Rev. 2013;42(21):8339–8359.
  • Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small. 2008;4(1):26–49.
  • Verma A, Stellacci F. Effect of surface properties on nanoparticle–cell interactions. Small. 2010;6(1):12–21.
  • Yildirimer L, Thanh NTK, Loizidou M, et al. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6(6):585–607.
  • Yamashita K, Yoshioka Y, Higashisaka K, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–328.
  • Mu Q, Jiang G, Chen L, et al. Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev. 2014;114(15):7740–7781.
  • Donaldson K, Stone V, Tran C, et al. Nanotoxicology. Occup Environ Med. 2004;61(9):727–728.
  • Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839.
  • Shvedova AA, Kisin ER, Mercer R, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol – Lung Cell Mol Physiol. 2005;289(5):L698–L708.
  • Pietroiusti A. Health implications of engineered nanomaterials. Nanoscale. 2012;4(4):1231–1247.
  • Macdonald TJ, Wu K, Sehmi SK, et al. Thiol-capped gold nanoparticles swell-encapsulated into polyurethane as powerful antibacterial surfaces under dark and light conditions. Sci Rep. 2016;6:39272.
  • Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol. 2014;12:5.
  • Cheng L-C, Jiang X, Wang J, et al. Nano–bio effects: interaction of nanomaterials with cells. Nanoscale. 2013;5(9):3547–3569.
  • Mailänder V, Landfester K. Interaction of nanoparticles with cells. Biomacromolecules. 2009;10(9):2379–2400.
  • Lai K, Wang B, Zhang Y, et al. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress. Phys Chem Chem Phys. 2012;15(1):270–278.
  • Schneemilch M, Quirke N. Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation. Chem Phys Lett. 2016;664:199–204.
  • Ding H, Ma Y. Interactions between Janus particles and membranes. Nanoscale. 2012;4(4):1116–1122.
  • Lopez H, Brandt EG, Mirzoev A, et al. Multiscale modelling of bionano interface. Modelling the toxicity of nanoparticles 2017 ( Advances in Experimental Medicine and Biology). Cham, ZG: Springer. p. 173–206 . Available from: https://link.springer.com/chapter/10.1007/978-3-319-47754-1_7
  • M. Meunier. Industrial applications of molecular simulations. Boca Raton, USA: CRC Press; 2011.
  • Quirke NKEG. Molecular simulation and industrial applications: methods, examples, and prospects. Amsterdam, The Netherlands: Gordon and Breach Science Publishers. (Current topics in molecular simulation, v. 1.), 1996.
  • Cooper GM, Sunderland, MA: Sinauer Associates. Cell membranes. 2000 Available from: https://www.ncbi.nlm.nih.gov/books/NBK9928/
  • Chapman D. Phospholipid bilayers physical principles and models.Cell Biochem Funct. 1988;6(2):147–148.
  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–124.
  • Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20(3):256–275.
  • Conner SD, Schmid SL. Regulated portals of entry into the cell. Nature. 2003;422(6927):37–44.
  • McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12(8):517–533.
  • Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902.
  • Kettler K, Veltman K, van de Meent D, et al. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem. 2014;33(3):481–492.
  • Lipowsky R, Döbereiner H-G. Vesicles in contact with nanoparticles and colloids. EPL Europhys Lett. 1998;43:219–225.
  • Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015;9(9):8655–8671.
  • Lin J, Zhang H, Chen Z, et al. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano. 2010;4(9):5421–5429.
  • Campelo F, Malhotra V. Membrane fission: the biogenesis of transport carriers. Annu Rev Biochem. 2012;81(1):407–427.
  • Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Nat.forsch. Teil C Biochem Biophys Biol Virol. 1973;28(11):693–703.
  • Deserno M. Elastic deformation of a fluid membrane upon colloid binding. Phys Rev E. 2004;69(3):031903.
  • Zhang S, Li J, Lykotrafitis G, et al. Size-dependent endocytosis of nanoparticles. Adv Mater. 2009;21:419–424.
  • Agudo-Canalejo J, Lipowsky R. Uniform and Janus-like nanoparticles in contact with vesicles: energy landscapes and curvature-induced forces. Soft Matter. 2017 Feb 10 13:2155–2173.
  • Morris CE, Homann U. Cell surface area regulation and membrane tension. J Membr Biol. 2001;179(2):79–102.
  • Schweitzer Y, Lieber AD, Keren K, et al. Theoretical analysis of membrane tension in moving cells. Biophys J. 2014;106(1):84–92.
  • Raucher D, Sheetz MP. Membrane expansion increases endocytosis rate during mitosis. J Cell Biol. 1999;144(3):497–506.
  • Deserno M, Gelbart WM. Adhesion and wrapping in colloid−vesicle complexes. J Phys Chem B. 2002;106(21):5543–5552.
  • Tarazona P, Chacón E, Bresme F. Thermal fluctuations and bending rigidity of bilayer membranes. J Chem Phys. 2013;139(9):94902.
  • Nagle JF. Introductory lecture: basic quantities in model biomembranes. Faraday Discuss. 2013;161:11–150.
  • Messerschmidt C, Hofmann D, Kroeger A, et al. On the pathway of cellular uptake: new insight into the interaction between the cell membrane and very small nanoparticles. Beilstein J Nanotechnol. 2016;7:1296–1311.
  • Lesniak A, Salvati A, Santos-Martinez MJ, et al. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc. 2013;135(4):1438–1444.
  • Robertson JD, Rizzello L, Avila-Olias M, et al. Purification of nanoparticles by size and shape. Sci Rep 2016 Jun 8;6:27494.
  • Cho EJ, Holback H, Liu KC, et al. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–2110.
  • Montes-Burgos I, Walczyk D, Hole P, et al. Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanoparticle Res. 2010;12(1):47–53.
  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577–5591.
  • Leroueil PR, Berry SA, Duthie K, et al. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 2008;8(2):420–424.
  • Mahmoudi M, Lynch I, Ejtehadi MR, et al. Protein−nanoparticle interactions: opportunities and challenges. Chem Rev. 2011;111(9):5610–5637.
  • Monopoli MP, Walczyk D, Campbell A, et al. Physical−chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. 2011;133(8):2525–2534.
  • Weissleder R, Kelly K, Sun EY, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23(11):1418–1423.
  • Salatin S, Maleki Dizaj S, Yari Khosroushahi A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol Int. 2015;39(8):881–890.
  • Fernandez-Trillo F, Grover LM, Stephenson-Brown A, et al. Vesicles in nature and the laboratory: elucidation of their biological properties and synthesis of increasingly complex synthetic vesicles. Angew Chem Int Ed. 2017;56(12):3142–3160.
  • Joseph A, Contini C, Cecchin D, et al. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci Adv. 2017;3(8):e1700362.
  • Karamdad K, Law RV, Seddon JM, et al. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method. Lab Chip. 2014;15(2):557–562.
  • Angelova MI, Dimitrov DS. Liposome electroformation. Faraday Discuss Chem Soc. 1986;81:303–311.
  • Chen KL, Bothun GD. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ Sci Technol. 2014;48(2):873–880.
  • Hou W-C, Moghadam BY, Corredor C, et al. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes. Environ Sci Technol. 2012;46(3):1869–1876.
  • Rascol E, Devoisselle J-M, Chopineau J. The relevance of membrane models to understand nanoparticles–cell membrane interactions. Nanoscale. 2016;8(9):4780–4798.
  • Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta BBA – Biomembr. 1986;858(1):161–168.
  • Needham D, McIntosh TJ, Evans E. Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry (Mosc). 1988;27(13):4668–4673.
  • MicroCal PEAQ-DSC automated – differential scanning calorimeter. Available from: https://www.malvern.com/en/support/product-support/microcal-range/microcal-dsc-range/microcal-peaq-dsc-automated/
  • Lindman S, Lynch I, Thulin E, et al. Systematic investigation of the thermodynamics of HSA adsorption to N-iso-Propylacrylamide/N-tert-Butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 2007;7(4):914–920.
  • Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci. 2007;104(7):2050–2055.
  • Joshi H, Shirude PS, Bansal V, et al. Isothermal titration calorimetry studies on the binding of amino acids to gold nanoparticles. J Phys Chem B. 2004;108(31):11535–11540.
  • Loosli F, Vitorazi L, Berret J-F, et al. Isothermal titration calorimetry as a powerful tool to quantify and better understand agglomeration mechanisms during interaction processes between TiO2 nanoparticles and humic acids. Env Sci Nano. 2015;2(5):541–550.
  • Kettiger H, Québatte G, Perrone B, et al. Interactions between silica nanoparticles and phospholipid membranes. Biochim Biophys Acta BBA – Biomembr. 2016;1858(9):2163–2170.
  • Heerklotz H. The microcalorimetry of lipid membranes. J Phys Condens Matter. 2004;16(15):R441–R467.
  • Alig ARG, Gourdon D, Israelachvili J. Properties of confined and sheared Rhodamine B films studied by SFA−FECO spectroscopy. J Phys Chem B. 2007;111(1):95–106.
  • Anderson TH, Min Y, Weirich KL, et al. Formation of supported bilayers on silica substrates. Langmuir. 2009;25(12):6997–7005.
  • Israelachvili JN. Intermolecular and surface forces. London: Academic Press; 1992.
  • Burgess I, Li M, Horswell SL, et al. Influence of the electric field on a bio-mimetic film supported on a gold electrode. Colloids Surf B Biointerfaces. 2005;40(3–4):117–122.
  • Lipkowski J. Building biomimetic membrane at a gold electrode surface. Phys Chem Chem Phys. 2010;12(42):13874–13887.
  • Vakurov A, Galluzzi M, Podestà A, et al. Direct characterization of fluid lipid assemblies on mercury in electric fields. ACS Nano. 2014;8(4):3242–3250.
  • Schulz M, Olubummo A, Binder WH. Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter. 2012;8(18):4849–4864.
  • Moghadam BY, Hou W-C, Corredor C, et al. Role of nanoparticle surface functionality in the disruption of model cell membranes. Langmuir. 2012;28(47):16318–16326.
  • Richter R, Mukhopadhyay A, Brisson A. Pathways of lipid vesicle deposition on solid surfaces: a combined QCM-D and AFM study. Biophys J. 2003;85(5):3035–3047.
  • Shapero K, Fenaroli F, Lynch I, et al. Time and space resolved uptake study of silica nanoparticles by human cells. Mol Biosyst. 2011;7(2):371–378.
  • Nel A, Xia T, Meng H, et al. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res. 2013;46(3):607–621.
  • Le Bihan O, Bonnafous P, Marak L, et al. Cryo-electron tomography of nanoparticle transmigration into liposome. J Struct Biol. 2009;168(3):419–425.
  • Michel R, Kesselman E, Plostica T, et al. Internalization of silica nanoparticles into fluid liposomes: formation of interesting hybrid colloids. Angew Chem Int Ed. 2014;53(46):12441–12445.
  • Roiter Y, Ornatska M, Rammohan AR, et al. Interaction of nanoparticles with lipid membrane. Nano Lett. 2008;8(3):941–944.
  • Zhang S, Nelson A, Beales PA. Freezing or Wrapping: the role of particle size in the mechanism of nanoparticle–biomembrane interaction. Langmuir. 2012;28(35):12831–12837.
  • Strobl FG, Seitz F, Westerhausen C, et al. Intake of silica nanoparticles by giant lipid vesicles: influence of particle size and thermodynamic membrane state. Beilstein J Nanotechnol. 2014;5(1):2468–2478.
  • Schneemilch M, , Quirke N. Submitted, 2017.