2,171
Views
27
CrossRef citations to date
0
Altmetric
Articles

Preparation and characterisation of nano enhanced phase change material by adding carbon nano tubes to butyl stearate

&
Pages 188-198 | Received 16 Apr 2018, Accepted 15 Jul 2018, Published online: 11 Nov 2018

References

  • Dincer I, Rosen M. Thermal energy storage: systems and applications. 2002.
  • Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew Sustain Energy Rev. 2010;14(2):615–628.
  • Nkwetta DN, Haghighat F. Thermal energy storage with phase change material—a state-of-the art review. Sustain Cities Soc. 2014;10:87–100.
  • Kenisarin MM. Thermophysical properties of some organic phase change materials for latent heat storage. A review. Solar Energy. 2014;107:553–575.
  • Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew Sustain Energy Rev. 2012;16(4):2118–2132.
  • Rathod MK, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev. 2013;18:246–258.
  • Kenisarin M, Mahkamov K. Solar energy storage using phase change materials. Renew Sustain Energy Rev. 2007;11(9):1913–1965.
  • Shalaby SM, Bek MA, El-Sebaii AA. Solar dryers with PCM as energy storage medium: a review. Renew Sustain Energy Rev. 2014;33:110–116.
  • Jamekhorshid A, Sadrameli SM. Application of phase change materials (PCMs) in maintaining comfort temperature inside an automobile. World Acad Sci Eng Technol Int J Chem Mol Nucl Mater Metall Eng. 2012;6(1):33–35.
  • Mondal S. Phase change materials for smart textiles–an overview. Appl Therm Eng. 2008;28(11):1536–1550.
  • Hosseini MJ, Rahimi M, Bahrampoury R. Experimental and computational evolution of a shell and tube heat exchanger as a PCM thermal storage system. Int Commun Heat Mass Transfer. 2014;50:128–136.
  • Soares N, Costa JJ, Gaspar AR, Santos P. Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Buildings. 2013;59:82–103.
  • Kumaresan V, Velraj R, Das SK. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification. Heat Mass Transfer. 2012;48(8):1345–1355.
  • Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–250
  • Wen D, Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). J Thermophys Heat Transf. 2004;18:481–485.
  • Assael MJ, Metaxa I, Arvanitidis J, Christofilos D, Lioustas C. Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys. 2005;26:647–664.
  • He Y, Men Y, Liu X et al. Study on forced convective heat transfer of non-Newtonian nanofluids. J Therm Sci. 2009;1:20–26.
  • Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:549–552.
  • Breuer O, Sundararaj U. Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos. 2004;25:630–641.
  • Tang X, Hammel E, Reiter W. Carbon nanotube enhanced thermally conductive phase change material for heat dissipation. In Thermal Investigations of ICs and Systems, 2009. THERMINIC 2009. 15th International Workshop on (pp. 216–218). . IEEE; October 2009.
  • Cui Y, Liu C, Hu S, Yu X. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Mater Solar Cells. 2011;95(4):1208–1212.
  • Choi DH, Lee J, Hong H, Kang YT. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application. Int J Refrig. 2014;42:112–120.
  • Warzoha RJ, Fleischer AS. Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials. Appl Energy. 2015;154:271–276.
  • Foygel M, Morris R, Anez D, French S, Sobolev V. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 2005;71(10):104201.
  • Shaikh S, Lafdi K, Hallinan K. Carbon nanoadditives to enhance latent energy storage of phase change materials. J Appl Phys. 2008;103(9):094302.
  • Zhang S, Wu JY, Tse CT, Niu J. Effective dispersion of multi-wall carbon nano-tubes in hexadecane through physiochemical modification and decrease of supercooling. Sol Energy Mater Sol Cells. 2012;96:124–130.
  • Wang J, Xie H, Xin Z, Li Y, Chen L. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers. Sol Energy. 2010;84(2):339–344.
  • Yang Y, Luo J, Song G, Liu Y, Tang G. The experimental exploration of nano-Si3N4/paraffin on thermal behavior of phase change materials. Thermochim Acta. 2014;597:101–106.
  • Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–2254.
  • Uzan AY, Kozak Y, Korin Y, Harary I, Mehling H, Ziskind G. A novel multi-dimensional model for solidification process with supercooling. Int J Heat Mass Transf. 2017;106:91–102.