2,980
Views
12
CrossRef citations to date
0
Altmetric
Article

Exploring the therapeutic potentials of phyto-mediated silver nanoparticles formed via Calotropis procera (Ait.) R. Br. root extract

, , , , , , , , , , & show all
Pages 217-231 | Received 17 Feb 2020, Accepted 04 May 2020, Published online: 27 May 2020

References

  • Morens DM, Fauci AS. Emerging infectious diseases: threats to human health and global stability. PLoS Pathog. 2013;9(7):e1003467.
  • Mulani MS, Kamble EE, Kumkar SN, et al. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol. 2019;10:539.
  • Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079–1081.
  • Chen J, Novick RP. Phage-mediated intergeneric transfer of toxin genes. Science. 2009;323(5910):139–141.
  • Beyth N, Houri-Haddad Y, Domb A, et al. Alternative antimicrobial approach: nano-antimicrobial materials. Evid-Based Complementary Altern Med. 2015;2015:1–16.
  • Akram FE, El-Tayeb T, Abou-Aisha K, et al. A combination of silver nanoparticles and visible blue light enhances the antibacterial efficacy of ineffective antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). Ann Clin Microbiol Antimicrob. 2016;15:48.
  • Bairagi SM, Prashant G, Gilhotra R. Pharmacology of natural products: an recent approach on Calotropis gigantea and Calotropis procera. Ars Pharm. 2018;59(1):37–44.
  • Rahimi M. Pharmacognostical aspects and pharmacological activities of Calotropis procera. Bull Environ Pharmacol Life Sci. 2015;4(2):156–162.
  • Oloumi H. Phytochemistry and ethno-pharmaceutics of Calotropis procera. Ethno-Pharm Prod. 2014;1(2):1–8.
  • Rasik AM, Raghubir R, Gupta A, et al. Kulshrestha DK healing potential of Calotropis procera on dermal wounds in Guinea pigs. J Ethnopharmacol. 1999; 68(1–3):261–266.
  • Parrotta J. Healing plants of Peninsular India. Wallingford: CAB International, 2001; p. 944.
  • Mohamed NH, Ismail MA, Abdel-Mageed WM, et al. Antimicrobial activity of latex silver nanoparticles using Calotropis procera. Asian Pac J Trop Biomed. 2014; 4(11):876–883.
  • Trease GE, Evans WC. Pharmacognosy. 11th ed. Bailliere Tindall: Cassell and Collier Macmillan Publishers; 1989.
  • Bauer AW, Kirby WM, Sherris JC, Turck, et al. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–496.
  • CLSI. M100-S25 performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement; 2015.
  • Khalifa RA, Nasser MS, Gomaa AA, et al. Resazurin microtiter assay plate method for detection of susceptibility of multidrug resistant Mycobacterium tuberculosis to second-line anti-tuberculous drugs. Egypt J Chest Dis Tuberc. 2013;62(2):241–247. 05.008.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Met. 1983;65(1–2):55–63.
  • Shaker KH, Morsy N, Zinecker H, et al. Secondary metabolites from Calotropis procera (Aiton). Phytochem Lett. 2010;3(4):212–216.
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502.
  • Ahmad A, Mukherjee P, Senapati S, et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces. 2003;28(4):313–318.
  • Terenteva EA, Apyari VV, Dmitrienko SG, et al. Formation of plasmonic silver nanoparticles by flavonoid reduction: A comparative study and application for determination of these Substances. Spectrochim Acta A Mol Biomol Spectrosc. 2015;151:89–95.
  • Raveendran P, Fu J, Wallen SL. Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125(46):13940–13941.
  • Sivakumar J, Premkumar C, Santhanam P, et al. Biosynthesis of silver nanoparticles using Calotropis gigantea leaf. African J Basic Appl Sci. 2011;3(6):265–270.
  • Raman C. Green synthesis of silver nanoparticles using Calotropis gigantea and their potential mosquito larvicidal property. Int J Pure Appl Zool. 2014;2:128–137.
  • Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmiur. 1996;12(3):788–800.
  • McGown DN, Parfitt G, Willis E. Stability of non-aqueous dispersions. I. The relationship between surface potential and stability in hydrocarbon media. J Colloid Sci. 1965;20(7):650–664.
  • Yan J, Abdelgawad AM, El-Naggar ME, et al. Antibacterial activity of silver nanoparticles synthesized In-situ by solution spraying onto cellulose. Carbohydr Polym. 2016;147:500–508.
  • El-Naggar NE-A, Hussein MH, El-Sawah AA. Bio-fabrication of silver nanoparticles by phycocyanin, characterization, in vitro anticancer activity against breast cancer cell line and in vivo cytotxicity. Sci Rep. 2017;7(1):10844.
  • Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42(4):321–324.
  • Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013;4(4):273–283.
  • Zarei M, Jamnejad A, Khajehali E. Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur J. Microbiol. 2014;7:8720–8723.
  • Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev. 2005;69(4):585–607.
  • Mobley H. How do antibiotics kill bacterial cells but not human cells? Sci Am. 2006;294:98.