1,540
Views
11
CrossRef citations to date
0
Altmetric
Article

Highly efficient catalytic degradation of p-nitrophenol by Mn3O4.CuO nanocomposite as a heterogeneous fenton-like catalyst

ORCID Icon, , &
Pages 322-336 | Received 04 Feb 2020, Accepted 07 Jul 2020, Published online: 22 Jul 2020

References

  • Sun S-P, Lemley AT. p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: process optimization, kinetics, and degradation pathways. J Mol Catal A Chem. 2011;349(1-2):71–79.
  • Wu Z, Yuan X, Zhong H, et al. Enhanced adsorptive removal of p-nitrophenol from water by aluminum metal-organic framework/reduced graphene oxide composite. Sci Rep. 2016;6:25638–25638.
  • Ahmed MJ, Theydan SK. Adsorptive removal of p-nitrophenol on microporous activated carbon by FeCl3 activation: equilibrium and kinetics studies. Desalin Water Treat. 2015;55(2):522–531.
  • Chen J, Sun X, Lin L, et al. Adsorption removal of o-nitrophenol and p-nitrophenol from wastewater by metal–organic framework Cr-BDC. Chin J Chem Eng. 2017;25(6):775–781.
  • Shen H-M, Zhu G-Y, Yu W-B, et al. Fast adsorption of p-nitrophenol from aqueous solution using β-cyclodextrin grafted silica gel. Appl Surf Sci. 2015;356:1155–1167.
  • Tomei MC, Annesini MC, Rita S, et al. Biodegradation of 4-nitrophenol in a two-phase sequencing batch reactor: concept demonstration, kinetics and modelling. Appl Microbiol Biotechnol. 2008;80(6):1105–1112.
  • Suja E, Nancharaiah YV, Venugopalan VP. p-Nitrophenol biodegradation by aerobic microbial granules. Appl Biochem Biotechnol. 2012;167(6):1569–1577.
  • Pouretedal HR, Tavakkoli M. Photodegradation of para-nitrophenol catalyzed by Fe2O3/FeS nanocomposite. Desalin Water Treat. 2013;51(22-24):4744–4749.
  • Yang L, Luo S, Li Y, et al. High efficient photocatalytic degradation of p-nitrophenol on a unique Cu2O/TiO2 p-n heterojunction network catalyst. Environ Sci Technol. 2010;44(19):7641–7646.
  • Qiu Y, Zhou J, Cai J, et al. Highly efficient microwave catalytic oxidation degradation of p-nitrophenol over microwave catalyst of pristine α-Bi2O3. Chem Eng J. 2016;306:667–675.
  • Yin C, Cai J, Gao L, et al. Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method. J Hazard Mater. 2016;305:15–20.
  • Singh L, Rekha P, Chand S. Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye. Sep Purif Technol. 2016;170:321–336.
  • Nekoeinia M, Salehriahi F, Moradlou O, et al. Enhanced Fenton-like catalytic performance of N-doped graphene quantum dot incorporated CuCo2O4. New J Chem. 2018;42(11):9209–9220. 10.1039/C8NJ00219C
  • Liu Y, Jin W, Zhao Y, et al. Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl Catal, B. 2017;206:642–652.
  • Zhang M-h, Dong H, Zhao L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective. Sci Total Environ. 2019; 2019/06/20/670:110–121.
  • Zhong X, Xiang L, Royer S, et al. Degradation of C.I. Acid Orange 7 by heterogeneous Fenton oxidation in combination with ultrasonic irradiation. J Chem Technol Biotechnol. 2011;86(7):970–977.
  • Zhang H, Gao H, Cai C, et al. Decolorization of Crystal Violet by ultrasound/heterogeneous Fenton process. Water Sci Technol. 2013;68(11):2515–2520.
  • Sathishkumar P, Mangalaraja RV, Anandan S. Review on the recent improvements in sonochemical and combined sonochemical oxidation processes – a powerful tool for destruction of environmental contaminants. Renewable Sustain Energy Rev. 2016;55:426–454.
  • Eren Z. Ultrasound as a basic and auxiliary process for dye remediation: a review. J Environ Manage. 2012;104:127–141.
  • Hamdaoui O. Intensification of the sorption of Rhodamine B from aqueous phase by loquat seeds using ultrasound. Desalination. 2011;271(1-3):279–286.
  • Zhong X, Royer S, Zhang H, et al. Mesoporous silica iron-doped as stable and efficient heterogeneous catalyst for the degradation of C.I. Acid Orange 7 using sono–photo-Fenton process. Sep Purif Technol. 2011;80(1):163–171.
  • Bagal MV, Lele BJ, Gogate PR. Removal of 2,4-dinitrophenol using hybrid methods based on ultrasound at an operating capacity of 7 L. Ultrason Sonochem. 2013;20(5):1217–1225.
  • ElShafei GMS, Al-Sabagh AM, Yehia FZ, et al. Metal oxychlorides as robust heterogeneous Fenton catalysts for the sonophotocatalytic degradation of 2-nitrophenol. Appl Catal, B. 2018;224:681–691.
  • Mishra KP, Gogate PR. Ultrasonic degradation of p-nitrophenol in the presence of additives at pilot scale capacity. Ind Eng Chem Res. 2012;51(3):1166–1172.
  • Mageshwari K, Sathyamoorthy R. Organic free synthesis of flower-like hierarchical CuO microspheres by reflux condensation approach. Appl Nanosci. 2013;3(2):161–166.
  • Anu Prathap MU, Kaur B, Srivastava R. Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J Colloid Interface Sci. 2012;370(1):144–154.
  • Gopalakrishnan M, Purushothaman V, Ramakrishnan V, et al. The effect of nitridation temperature on the structural, optical and electrical properties of GaN nanoparticles. CrystEngComm. 2014;16(17):3584–3591.
  • Dubal DP, Dhawale DS, Salunkhe RR, et al. A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl Surf Sci. 2010;256(14):4411–4416.
  • Ahmed KAM, Huang K. Formation of Mn3O4 nanobelts through the solvothermal process and their photocatalytic property. Arabian J Chem. 2019;12(3):429–439.
  • Thommes M, Kaneko K, Neimark A, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87(9-10):1051–1069.
  • Wang Q, Guan S, Li B. 2D graphitic-C3N4 hybridized with 1D flux-grown Na-modified K2Ti6O13 nanobelts for enhanced simulated sunlight and visible-light photocatalytic performance. Catal Sci Technol. 2017;7(18):4064–4078. 10.1039/C7CY01134B
  • Wang H, Jiang H, Wang S, et al. Fe3O4–MWCNT magnetic nanocomposites as efficient peroxidase mimic catalysts in a Fenton-like reaction for water purification without pH limitation. RSC Adv. 2014;4(86):45809–45815. 10.1039/C4RA07327D
  • Dong Q, Chen Y, Wang L, et al. Cu-modified alkalinized g -C 3 N 4 as photocatalytically assisted heterogeneous Fenton-like catalyst. Appl Surf Sci. 2017;426:1133–1140. 07/01
  • Queirós S, Morais V, Rodrigues CSD, et al. Heterogeneous Fenton’s oxidation using Fe/ZSM-5 as catalyst in a continuous stirred tank reactor. Sep Purif Technol. 2015;141:235–245.
  • Muruganandham M, Suri RPS, Jafari S, et al. Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. J Int J Photoenergy. 2014;2014:1–21.
  • Bokare AD, Choi W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater. 2014;275:121–135.
  • Sheng Y, Abreu IA, Cabelli DE, et al. Superoxide dismutases and superoxide reductases. Chem Rev. 2014;114(7):3854–3918.
  • Wang H, Zhao Y, Su Y, et al. Fenton-like degradation of 2,4-dichlorophenol using calcium peroxide particles: performance and mechanisms. RSC Adv. 2017;7(8):4563–4571. 10.1039/C6RA26754H
  • Farooq U, Danish M, Lu S, et al. Synthesis of nZVI@reduced graphene oxide: an efficient catalyst for degradation of 1,1,1-trichloroethane (TCA) in percarbonate system. Res Chem Intermed. 2017;43(5):3219–3236.
  • Subbulekshmi NL, Subramanian E. Nano CuO immobilized fly ash zeolite Fenton-like catalyst for oxidative degradation of p-nitrophenol and p-nitroaniline. J Environ Chem Eng. 2017;5(2):1360–1371.
  • Rhadfi T, Piquemal J-Y, Sicard L, et al. Polyol-made Mn3O4 nanocrystals as efficient Fenton-like catalysts. Appl Catal, A. 2010;386(1-2):132–139.
  • Wan Z, Wang J. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. J Hazard Mater. 2017;324(Pt B):653–664. 2017/02/15/
  • Zhu J, Zhang G, Xian G, et al. A high-efficiency CuO/CeO(2) catalyst for diclofenac degradation in fenton-like system. Front Chem. 2019;7:796–796.
  • Kim S-U, Villamena FA. Reactivities of superoxide and hydroperoxyl radicals with disubstituted cyclic nitrones: a DFT study. J Phys Chem A. 2012;116(2):886–898.
  • Eshaq G, Wang S, Sun H, et al. Core/shell FeVO4@BiOCl heterojunction as a durable heterogeneous Fenton catalyst for the efficient sonophotocatalytic degradation of p-nitrophenol. Sep Purif Technol. 2020;231:115915.
  • Eshaq G, Wang S, Sun H, et al. Superior performance of FeVO4@CeO2 uniform core-shell nanostructures in heterogeneous Fenton-sonophotocatalytic degradation of 4-nitrophenol. J Hazard Mater. 2020;382:121059.