2,295
Views
36
CrossRef citations to date
0
Altmetric
Article

Anti-bacterial/fungal and anti-cancer performance of green synthesized Ag nanoparticles using summer savory extract

, , &
Pages 363-380 | Received 29 Apr 2020, Accepted 14 Jul 2020, Published online: 29 Jul 2020

References

  • Sriramulu M, Sumathi S. Fungal based synthesis of silver nanoparticles and their antimicrobial activity. Int J Chem Tech Res. 2017;10(1):367–377.
  • Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 2006;32(8):967–976.
  • Majeed S, Danish M, Binti-Zahrudin AH, et al. Biosynthesis and characterization of silver nanoparticles from fungal species and its antibacterial and anticancer effect. Karbala Int J Mod Sci. 2018;4(1):86–92.
  • Chahardoli A, Karimi N, Fattahi A. Biosynthesis, characterization, antimicrobial and cytotoxic effects of silver nanoparticles using Nigella arvensis seed extract. Iran J Pharm Res. 2017;16(3):1167–1175.
  • Sudhasree S, Shakila Banu A, Brindha P, et al. Synthesis of nickel nanoparticles by chemical and green route and their comparison for biological effect and toxicity. Toxicol Environ Chem. 2014;96(5):743–754.
  • Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications, and toxicities. REVIEW. Arabian J Chem. 2019;12(7):908–931.
  • Vetchinkina E, Loshchinina E, Kupryashina M, et al. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. PeerJ. 2018;6:e5237.
  • Alarcon EI, Griffth M, Udekwu KI. Silver nanoparticle applications in the fabrication and design of medical and biosensing devices. New York: Springer; 2015.
  • Wei L, Lu J, Xu H, et al. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20(5):595–601.
  • Zhang XF, Liu ZG, Shen W, et al. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. IJMS. 2016;17(9):1534.
  • Marslin G, Siram K, Maqbool Q, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials. 2018;11(6):940.
  • Lee SH, Jun BH. Silver nanoparticles: Synthesis and application for nanomedicine. IJMS. 2019;20(4):865.
  • Karimi N, Yari M, Ghasmpour HR. Identification, and comparison of essential oil composition and mineral changes in different phenological stages of Satureja hortensis L. Iranian J Plant Physiol. 2012;3(1):577–582.
  • Valizadeh S, Fakheri T, Mahmoudi R, et al. Evaluation of antioxidant, antibacterial, and antifungal properties of Satureja hortensis essential oil. Biotech Health Sci. 2014;1(3):e24733.
  • Rasaee I, Ghannadnia M, Baghshahi S. Biosynthesis of silver nanoparticles using leaf extract of Satureja hortensis treated with NaCl and its antibacterial properties. Microporous Mesoporous Mater. 2018;264:240–247.
  • Mohammadhosseini M, Beiranvand M. Chemical composition of the essential oil from the aerial parts of Satureja hortensis as a potent medical plant using traditional hydrodistillation. J Chem Health Risks. 2012;3(4):43–54.
  • Hazrati H, Saharkhiz MJ, Niakousari M, et al. Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicol Environ Saf. 2017;142:423–430.
  • Nikaein F, Zibaeenezhad MJ, Babajafari SS, et al. The effects of Satureja hortensis L. dried leaves on serum sugar lipid profiles, hs-CRP, and blood pressure in metabolic syndrome patients: A double-blind randomized clinical trial. Iran Red Crescent Med J. 2017;19(1):e34931.
  • Fierascu I, Dinu-Pirvu CE, Velescu BS, et al. Phytochemical profile and biological activities of Satureja hortensis L. A review of the last decade. Molecules. 2018;23(10):2458.
  • Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard. 20th edition, M07-A10. Wayne, PA: CLSI; 2012. 68.
  • Haytham Ibrahim MM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci. 2015;8(3):265–275.
  • Malinsky MD, Kelly KL, Schatz GC, et al. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J Am Chem Soc. 2001;123(7):1471–1482.
  • Fayaz AM, Balaji KP, Kalaichelvan, Venkatesan R. Fungal based synthesis of silver nanoparticles—an effect of temperature on the size of particles. Colloids Surf B Biointerf. 2009;74:123–126.
  • Pourmortazavi SM, Taghdiri M, Makari V, et al. Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta Mol Biomol Spectrosc. 2015;136:1249–1254.
  • Jerković I, Giovanni Tuberoso CI, Kranjac M, et al. Characterization of Summer Savory (Satureja hortensis L.) honey by physico-chemical parameters and chromatographic/spectroscopic techniques (GC-FID/MS, HPLC-DAD, UV/VIS, and FTIR-ATR). Croat Chem Acta. 2015;88(1):15–22.
  • Vanaja M, Gnanajobitha G, Paulkumar K, et al. Photosynthesis of silver nanoparticles by Cissus quadrangularis influence of physicochemical factors. J Nanostruct Chem. 2013;3:1–8.
  • Suresh S, Karthikeyan S, Jayamoorthy K. FTIR, and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J Sci Adv Metab Disord. 2016;1:343–350.
  • Rajasekar P, Priyadharshini S, Rajarajeshwari T, et al. Bio-inspired synthesis of silver nanoparticles using Andrographis paniculata whole plant extract and their antimicrobial activity over pathogenic microbes. Int J Res Biomed Biotech. 2013;3:47–52.
  • Raghunandan D, Bedre MD, Basavaraja S, et al. Rapid biosynthesis of irregularly shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B Biointerf. 2010;79(1):235–240.
  • Leopold LF, Leopold N, Diehl HA, et al. Quantification of carbohydrates in fruit juices using FTIR spectroscopy and multivariate analysis. J Spectrosc. 2011;26(2):93–104.
  • Pavia DL, Lampman GM, Kriz GS, et al. Introduction to Spectroscopy, Cengage Learning. 4th Edition. 2008. ISBN-13: 978-0495114789.
  • Roopan SM, Rohit Madhumitha G, Rahuman AA, et al. Low-cost and eco-friendly photosynthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crops Prod. 2013;43:631–635.
  • Sedaghat S. Green biosynthesis of silver functionalized multi-walled carbon nanotubes, using Satureja hortensis L water extract and its bactericidal activity. J Nanoanalysis. 2017;4(1):59–64.
  • Prakash P, Gnanaprakasam P, Emmanuel R, et al. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates . Colloids Surf B Biointerfaces. 2013;108:255–259.
  • Dubey SP, Lahtinen M, Sillanpaa M. Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 2010;45(7):1065–1071.
  • Prabu HJ, Johnson I. Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts of Tragia involucrata, Cymbopogocitronella, Solanum verbascifolium and Tylophora ovata. Karbala Int J Mod Sci. 2015;1(4):237–246.
  • Chandran SP, Chaudhary M, Pasricha R, et al. Synthesis of gold nano triangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog. 2006;22(2):577–583.
  • Aromal SA, Vidhu V, Philip D. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim, Acta, Part A: Mol Biomol Spectrosc. 2012;85(1):99–104.
  • Yardily A, Sunitha N. Green synthesis of iron nanoparticles using hibiscus leaf extract, characterization, antimicrobial activity. Int J Scientific Res Rev. 2019;8(7):32–46.
  • Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. Leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci. 2016;9(3):217–227.
  • Mukherjee S, Chowdhury D, Kotcherlakota R, et al. Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics. 2014;4(3):316–335.
  • Magudapathy P, Gangopadhyay P, Panigrahi BK, et al. Electrical transport studies of Ag nanoparticles embedded in a glass matrix. Physica B. 2001;299(1–2):142–146.
  • Da’na E, Taha A, Afkar E. Green synthesis of iron nanoparticles by Acacia nilotica pods extract and its catalytic adsorption, and antibacterial activities. Appl Sci. 2018;8(10):1922.
  • Devatha CP, Kumar A, Katte SY. Green synthesis of iron nanoparticles using different leaf extracts for the treatment of domestic wastewater. J Clean Prod. 2016;139:1425–1435.
  • Shahwan T, Abu Sirriah S, Nairat M, et al. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J. 2011;172(1):258–266.
  • Kanagasubbulakshmi S, Kadirvelu K. Green synthesis of iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def Life Sci Jl. 2017;2(4):422–427.
  • Mudasir AD, Ingle A, Rai M. Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics. J Nanomed. 2013;9(1):105–110.
  • Sriram MI, Kanth SM, Kalishwaralal K, et al. Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. Int J Nanomed. 2010; 5:753–762.
  • Mousavi SM, Hashemi SA, Ghasemi Y, et al. Green synthesis of silver nanoparticles toward bio and medical applications: a review study. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S855–S872.
  • Thompson EA, Graham E, MacNeill CM, et al. Differential response of MCF7, MDA-MB-231, and MCF 10A cells to hyperthermia, silver nanoparticles, and silver nanoparticle-induced photothermal therapy. Int J Hyperthermia. 2014;30(5):312–323.
  • Ranjitham AM, Suja R, Caroling G, et al. In vitro evaluation of antioxidant, antimicrobial, anticancer activities and characterization of Brassica oleracea. Var. Bortrytis. L synthesized silver nanoparticles. Int J Pharm Sci. 2013;5:239–251.
  • Asadipour M, Amirghofran Z. Satureja hortensis induces cell death and inhibited cell cycle progression in K562 myelogenous and Jurkat T cell leukemia cell lines. J Immunoassay Immunochem. 2019;40(5):459–472.
  • Cetojevic-Simin DD, Bogdanovic GM, Cvetkovic DD, et al. Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha. J Buon. 2008;13(3):395–401.
  • Esmaeilbeig M, Kouhpayeh SA, Amirghofran Z. An investigation of the growth inhibitory capacity of several medicinal plants from Iran on tumor cell lines. Iran J Cancer Preven. 2015;8(5):e4032.
  • Sharifi-Rad J, Sharifi-Rad M, Hoseini-Alfatemi SM, et al. Composition, cytotoxic and antimicrobial activities of Satureja intermedia C.A. Mey Essential Oil. IJMS. 2015;16(8):17812–17825.
  • Narchin F, Larijani K, Rustaiyan A, et al. Phytochemical synthesis of silver nanoparticles by two techniques using Saturaja rechengri Jamzad Extract: Identifying and comparing in vitro anti-proliferative activities. Adv Pharm Bull. 2018;8(2):235–244.
  • Erci F, Cakir-Koc R, Isildak I. Green synthesis of silver nanoparticles using Thymbra spicata L. var. spicata (zahter) aqueous leaf extract and evaluation of their morphology-dependent antibacterial and cytotoxic activity, Artificial Cells. Artif Cells Nanomed Biotechnol. 2018;46(sup1):150–158.
  • Hamouda RA, Hussein MH, Abo-Elmagd RA, et al. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep. 2019;9(1):13071.
  • Xia T, Kovochich M, Brant J, et al. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006;6(8):1794–1807.
  • Ott M, Gogvadze V, Orrenius S, et al. Mitochondria, oxidative stress, and cell death. Apoptosis. 2007;12(5):913–922.
  • Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng. 2009; 32(1):79–84.
  • Martins D, Frungillo L, Anazzetti MC, et al. Antitumoral activity of L-ascorbic acid-poly-D, L-(lactide-coglycolide) nanoparticles containing violacein. Int J Nanomed. 2010;5:77–85.
  • Venkatesan B, Subramanian V, Tumala A, et al. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity. Asian Pac J Trop Med. 2014;7:294–300.
  • Rahman MF, Wang J, Patterson TA, et al. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol Lett. 2009;187(1):15–21.
  • Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci. 2014;103(7):1931–1944.