1,416
Views
4
CrossRef citations to date
0
Altmetric
Article

Interaction of metal ions with humic acids of brown coals of Kazakhstan

ORCID Icon, , &
Pages 406-416 | Received 09 Oct 2019, Accepted 06 Aug 2020, Published online: 25 Aug 2020

References

  • Zherebtsov SI, Malyshenko NV, Bryukhovetskaya LV, et al. Sorption of copper cations from aqueous solutions by brown coal and humic acids. Solid Fuel Chem. 2015;49(5):294–303. Russian.
  • Dinu MI. Interaction of metals ions in waters with humic substances of gley-podzolic soils. Geochemistry. 2015;2015:276–288. Russian.
  • Dinu MI. Comparison of the complexing abilities of fulvic acids and humic acids in an aquatic environment with iron and zinc ions. Water Resour. 2010;37(1):65–69. Russian.
  • Savelyeva AV, IvanovA.A YNV. Effect of structural characteristics of humic acids on the effectiveness of interaction with polyvalent metal cations. Chem Plant Raw Mater. 2015;4:77–83. Russian.
  • Murugan N, Prakash M, Jayakumar M, et al. Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu 2+. Appl. Surf. Sci. 2019;476:468–480..
  • Murugan N, Sundramoorthy AK. Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions. New J Chem. 2018;42(16):13297–13307.
  • Shulga YM, Baskakov SA, Baskakova YV, et al. Hybrid porous carbon materials derived from composite of humic acid and graphene oxide. Microporous Mesoporous Mater. 2017;245:24–30. http://dx.doi.org/10.1016/j.micromeso.2017.02.061.
  • De Melo BAG, Motta FL, Santana MHA. Humic acids: structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C Mater Biol Appl. 2016;62:967–974. http://dx.doi.org/10.1016/j.msec.2015.12.001.
  • Zhou S, Chen S, Yuan Y, et al. Influence of humic acid complexation with metal ions on extracellular electron transfer activity. Sci Rep. 2015;5:17067–17069. http://dx.doi.org/10.1038/srep17067.
  • Lopes WT, Thobie-Gautier C, Rezende MOO, et al. Electrochemical behavior of Cu (II) on carbon paste electrode modified by humic acid. Cyclic Voltammetry Study. 2002;14(1):71–77.
  • Fuentes M, Olaetxea M, Baigorri R, et al. Main binding sites involved in Fe(III) and Cu(II) complexation in humic-based structures. J. Geochemical Explor. 2013;129:14–17.
  • Redman AD, Macalady DL, Ahmann D. Natural organic matter affects Arsenic speciation and sorption onto hematite. Environ Sci Technol. 2002;36(13):2889–2896.
  • Buschmann J, Sigg L. Antimony(III) binding to humic substances: influence of pH and type of humic acid. Environ Sci Technol. 2004;38(17):4535–4541.
  • Lin HT, Wang MC, Li GC. Complexation of arsenate with humic substance in water extract of compost. Chemosphere. 2004;56(11):1105–1112.
  • Bauer M, Blodau C. Mobilization of arsenic by dissolved organic matter from iron oxides, soils and sediments. Sci Total Environ. 2006;354(2-3):179–190.
  • Ritter K, Aiken GR, Ranville JF, et al. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III). Environ Sci Technol. 2006;40(17):5380–5387.
  • Kar S, Maity JP, Jean JS, et al. Role of organic matter and humic substances in the binding and mobility of arsenic in a Gangetic aquifer. J Environ Sci Heal Part A Toxic/Hazard Subst Environ Eng. 2011;46(11):1231–1238.
  • Warwick P, Inam E, Evans N. Arsenic’s interaction with humic acid. Environ Chem. 2005;2(2):119–124.
  • Buschmann J, Kappeler A, Lindauer U, et al. Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum. Environ Sci Technol. 2006;40(19):6015–6020.
  • Liu G, Cai Y. Complexation of arsenite with dissolved organic matter: conditional distribution coefficients and apparent stability constants. Chemosphere. 2010;81(7):890–896.
  • Pilarski J, Waller P, Pickering W. Sorption of antimony species by humic acid. Water Air Soil Pollut. 1995;84(1-2):51–59.
  • Tighe M, Lockwood P, Wilson S. Adsorption of antimony(v) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J Environ Monit. 2005;7(12):1177–1185.
  • Filella M. Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of data obtained in bulk samples. Earth-Science Rev. 2011;107(3-4):325–341.
  • Tella M, Pokrovski GS. Antimony(III) complexing with O-bearing organic ligands in aqueous solution: an X-ray absorption fine structure spectroscopy and solubility study. Geochim Cosmochim Acta. 2009;73(2):268–290.
  • Evangelou VP, Marsi M. Composition and metal ion complexation behavour of humic fractions derived from corn tissue. Plant Soil. 2001;229(1):13–24.
  • Lishtvan II, Kaputsky FN, Yanuta Yu G, et al. The interaction of humic acids with metal ions and the structure of metal humic complexes. Bull Belarusian State Univ Ser. 2012;2:12–16. Russian. http://elib.bsu.by/bitstream/123456789/45291/1/humicacids.pdf.
  • Dmitrieva ED, Syundyukova K, Leontiev MM, et al. Influence of the ph of the media on the binding of ions of heavy metals by humic substances and hymatomelanic acids of peat. Acad Rec Kazan Univ Ser Nat Sci. 2017;159:575–588. Russian.
  • Sokolova CA, Tsyplakov WE, Kotov V, et al. Determination of concentration stability constants of complexes of heavy metal ions with humic acids. Sorption Chromatogr Process. 2013;13:162–172. Russian.
  • Zhernakova ZM. The interaction of metal ions with humic substances in natural environments. Water Chem Ecol. 2011;6:76–81. Russian.