2,133
Views
5
CrossRef citations to date
0
Altmetric
Articles

Vanadium doped titania nanoparticles for photocatalytic removal of heavy metals from aqueous solutions

Pages 51-61 | Received 05 Oct 2020, Accepted 25 Jan 2021, Published online: 22 Mar 2021

References

  • Li Y, Ma M, Wang X, et al. Preparation of cerium-doped titaniamacroporous films by a sol–gel spin coating using polypropylene glycol (PPG) as pore-creating agent: effects of Ce ions, PPG and calcination on photocatalytic activity. Surf Coat Technol. 2010;204(9–10):1353–1358.
  • Trung T, Cho WJ, Ha CS. Preparation of TiO2 nanoparticles in glycerol-containing solutions. Mater Lett. 2003;57(18):2746–2750.
  • Bhattacharyya K, Patra AK, Sastry PU, et al. Microstructural characterization of the V-doped nano-titania. J Alloys Compd. 2009;482(1–2):256–260.
  • Li X, Yu J, Jaroniec M, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev. 2019;119(6):3962–4179.
  • Doudou R, ZiZhan L, Yun HN, et al. Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution. Chem Eng J. 2020;390:1385–8947.
  • Dong S, Xin L, Changchang M, et al. Synthesized Z-scheme photocatalyst ZnO/g-C3N4 for enhanced photocatalytic reduction of CO2. New J Chem. 2020;44:16390.
  • Shen R, Xie J, Xiang Q, et al. Ni-based photocatalytic H2-production cocatalysts. Chinese J Catal. 2019;40(3):240–288.
  • Mengjie H, Muqing Q, Hui Y, et al. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci Tot Environ. 2021;760:0048–9697.
  • Yue L, Hongwei P, Xiangxue W, et al. Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: a review. Chem Eng J. 2021;406:1385–8947.
  • Sai Z, Bingfeng L, Xiangxue W, et al. Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chem Eng J. 2020;309:1385–8947.
  • Li X, Yu J, Jaronie M. Hierarchical photocatalysts. Chem Soc Rev. 2016;45(9):2603–2636.
  • Hamadanian M, Reisi-Vanani A, Majedi A. Preparation and characterization of S-doped TiO2 nanoparticles, effect of calcination temperature and evaluation of photocatalytic activity. Mater Chem Phys. 2009;116(2–3):376–382.
  • Kaczmarek D, Domaradzki J, Prociow EL, et al. TiO2 thin films doped with Pd and Eu for optically and electrically active TOS–Si heterojunction. Opt Mater. 2009;31(9):1337–1339.
  • Takeuchi M, Deguchi J, Hidaka M, et al. Enhancement of the photocatalytic reactivity of TiO2 nano-particles by a simple mechanical blending with hydrophobic mordenite (MOR) zeolite. Appl Catal B Environ. 2009;89(3–4):406–410.
  • Zhang Z, Weng X, Gong K, et al. Photocatalytic activity of nitrogen doped nano-titanias and titanium nitride towards methylene blue decolouration. In: NSTI Nanotech, NSTI nanotechnology conference and trade show, technical proceedings, Part 1: Materials, fabrication, particles, and characterization; 2008 Jun 1–5. Boston, MA, US: Taylor & Francis Inc.; 2008. p. 680–683.
  • Chen M, Ma CY, Mahmud T, et al. Hydrothermal synthesis of TiO2 nanoparticles: process modelling and experimental validation. In: Wu CY, Ge W, editors. Particulate materials: Synthesis, characterisation, processing and modelling. Great Britain: The Royal Society of Chemistry; 2011. p. 28–33.
  • Einaga H, Futamura S, Ibusuki T. Photocatalytic decomposition of benzene over TiO2 in a humidified airstream. Phys Chem Chem Phys. 1999;1(20):4903–4908.
  • Ishiguro H, Nakano R, Yao Y, et al. Photocatalytic inactivation of bacteriophages by TiO2-coated glass plates under low-intensity, long-wavelength UV irradiation. Photochem Photobiol Sci. 2011;10(11):1825–1829.
  • Rengifo-Herrera JA, Pizzio LR, Blanco MN, et al. Photocatalytic discoloration of aqueous malachite green solutions by UV-illuminated TiO2 nanoparticles under air and nitrogen atmospheres: effects of counter-ions and pH. Photochem Photobiol Sci. 2011;10(1):29–34.
  • Xin Z, Wen L, Zhipeng L, et al. Highly efficient enrichment mechanism of U(VI) and Eu(III) by covalent organic frameworks with intramolecular hydrogen-bonding from solutions. Appl Surf Sci. 2020;504:0169–4332.
  • Xin Z, Zhipeng L, Wen L, et al. The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution. J Hazard Mater. 2020;393:122353.
  • Tian G, Pan K, Fu H, et al. Enhanced photocatalytic activity of S-doped TiO2-ZrO2 nanoparticles under visible-light irradiation. J Hazard Mater. 2009;166(2–3):939–944.
  • Kalfa OM, Yalçınkaya Ö, Türker AR. Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. J Hazard Mater. 2009;166(1):455–461.
  • Hu MZ, Lai P, Bhuiyan MS, et al. Synthesis and characterization of anodized titanium-oxide nanotube arrays. J Mater Sci. 2009;44(11):2820–2827.
  • Al-Harahsheh M, Shawabkeh R, Al-Harahsheh A, et al. Surface modification and characterization of Jordanian kaolinite: application for lead removal from aqueous solutions. Appl Surf Sci. 2009;255(18):8098–8103.
  • Shawabkeh RA. Hydrometallurgical extraction of zinc from Jordanian electric arc furnace dust. Hydrometallurgy. 2010;104(1):61–65.
  • Mirghani M, Al-Mubaiyedh UA, Nasser MS, et al. Experimental study and modeling of photocatalytic reduction of Pb2+ by WO3/TiO2 nanoparticles. Sep Purif Technol. 2015;141:285–293.
  • Zhang J, Fu D, Wang S, et al. Photocatalytic removal of chromium(VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: feasibility, mechanism and kinetics. J Ind Eng Chem. 2019;80:23–32.
  • Shawabkeh R, Al-Harahsheh A, Hami M, et al. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel. 2004;83(7–8):981–985.
  • Shawabkeh RA, Abu-Nameh ESM. Absorption of phenol and methylene blue by activated carbon from pecan shells. Colloid J. 2007;69(3):355–359.