2,235
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fabrication of peroxidase-mimic iron oxide/carbon nanocomposite for highly sensitive colorimetric detection

, , , &
Pages 75-85 | Received 09 Aug 2021, Accepted 15 Dec 2021, Published online: 25 Feb 2022

References

  • Itoh T, Hanefeld U. Enzyme catalysis in organic synthesis. Green Chem. 2017;19(2):331–332.
  • Shoda S, Uyama H, Kadokawa J, et al. Enzymes as green catalysts for precision macromolecular synthesis. Chem Rev. 2016;116(4):2307–2413.
  • Yang HQ, Li JH, Shin HD, et al. Molecular engineering of industrial enzymes: recent advances and future prospects. Appl Microbiol Biotechnol. 2014;98(1):23–29.
  • Lin YH, Ren JS, Qu XG. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47(4):1097–1105.
  • Schafer JW, Zoi I, Antoniou D, et al. Optimization of the turnover in artificial enzymes via directed evolution results in the coupling of protein dynamics to chemistry. J Am Chem Soc. 2019;141(26):10431–10439.
  • Breslow R. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc Chem Res. 1995;28(3):146–153.
  • Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–583.
  • Huang Y, Ren J, Qu X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev. 2019;119(6):4357–4412.
  • Zhang J, Liu J. Light-activated nanozymes: catalytic mechanisms and applications. Nanoscale. 2020;12(5):2914–2923.
  • Wu J, Wang X, Wang Q, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48(4):1004–1076.
  • Wei H, Wang E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev. 2013;42(14):6060–6093.
  • Wang X, Gao XJ, Qin L, et al. eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nat Commun. 2019;10(1):704.
  • Shen X, Wang Z, Gao X, et al. Density functional Theory-Based method to predict the activities of nanomaterials as peroxidase mimics. ACS Catal. 2020;10(21):12657–12665.
  • Zeng J, Wei W, Liu X, et al. A simple method to fabricate a prussian blue nanoparticles/carbon nanotubes/poly (1, 2-diaminobenzene) based glucose biosensor. Microchim Acta. 2008;160(1–2):261–267.
  • Chen J, Wang Q, Huang L, et al. Prussian blue with intrinsic heme-like structure as peroxidase mimic. Nano Res. 2018;11(9):4905–4913.
  • Karyakin AA, Gitelmacher OV, Karyakina EE. Prussian blue-based first-generation biosensor. A sensitive amperometric electrode for glucose. Anal Chem. 1995;67(14):2419–2423.
  • Karyakin AA, Karyakina EE, Gorton L. Amperometric biosensor for glutamate using Prussian blue-based “artificial peroxidase” as a transducer for hydrogen peroxide. Anal Chem. 2000;72(7):1720–1723.
  • Zhang XQ, Gong SW, Zhang Y, et al. Prussian blue modified iron oxide magnetic nanoparticles and their high peroxidase-like activity. J Mater Chem. 2010;20(24):5110–5116.
  • Wu J, Yin F. Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. Electroanal Chem. 2013;694:1–5.
  • Komkova MA, Karyakina EE, Karyakin AA. Catalytically synthesized Prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc. 2018;140(36):11302–11307.
  • Song W, Zhao B, Wang C, et al. Electrospun nanofibrous materials: a versatile platform for enzyme mimicking and their sensing applications. Compos Commun. 2019;12:1–13.
  • Miao YE, He S, Zhong Y, et al. A novel hydrogen peroxide sensor based on Ag/SnO2 composite nanotubes by electrospinning. Electrochim Acta. 2013;99:117–123.
  • Liu X, Fang Y, Yang X, et al. Electrospun nanofifibrous membranes containing epoxy groups and hydrophilic polyethylene oxide chain for highly active and stable covalent immobilization of lipase. Chem Engin J. 2018;336:456–464.
  • Liu X, Fang Y, Yang X, et al. Electrospun epoxy-based nanofibrous membrane containing biocompatible feather polypeptide for highly stable and active covalent immobilization of lipase. Colloids Surf B Biointerfaces. 2018;166:277–285.
  • Ren G, Xu X, Liu Q, et al. Electrospun poly (vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym. 2006;66(12):1559–1564.
  • Jiang Y, Nie G, Chi M, et al. Synergistic effect of ternary electrospun TiO2/Fe2O3/PPy composite nanofibers on peroxidase-like mimics with enhanced absorbance performance. RSC Adv. 2016;6(37):31107–31113.
  • Song W, Yang Z, Ma F, et al. Electrospun magnetic CoFe2O4/Ag hybrid nanotubes for sensitive SERS detection and monitoring of the catalytic degradation of organic pollutants. RSC Adv. 2017;7(64):40334–40341.
  • Zhang Z, Jiang Y, Chi M, et al. Electrospun polyacrylonitrile nanofibers supported alloyed Pd-Pt nanoparticles as recyclable catalysts for hydrogen generation from the hydrolysis of ammonia borane. RSC Adv. 2015;5(114):94456–94461.
  • Lou Z, Zhao S, Wang Q, et al. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal Chem. 2019;91(23):15267–15274.
  • Lu N, Zhang M, Ding L, et al. Yolk-shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale. 2017;9(13):4508–4515.
  • Zhu H, Hu Y, Jiang G, et al. Peroxidase-like activity of aminopropyltriethoxysilane-modified iron oxide magnetic nanoparticles and its application to clenbuterol detection. Eur Food Res Technol. 2011;233(5):881–887.