1,206
Views
2
CrossRef citations to date
0
Altmetric
Articles

Fabrication of neuroprotective silk-sericin hydrogel: potential neuronal carrier for the treatment and care of ischemic stroke

&
Pages 362-376 | Received 10 Jan 2022, Accepted 03 May 2022, Published online: 31 May 2022

References

  • Sharma R, Kwon S. New applications of nanoparticles in cardiovascular imaging. J Exp Nanosci. 2007;2(1-2):115–126..
  • Huang Y, Zhu C, Xie R, et al. Green synthesis of nickel nanoparticles using fumaria officinalis as a novel chemotherapeutic drug for the treatment of ovarian cancer. J Exp Nanosci. 2021;16(1):368–381..
  • Traversa E, Mecheri B, Mandoli C, et al. Tuning hierarchical architecture of 3D polymeric scaffolds for cardiac tissue engineering. J Exp Nanosci. 2008;3(2):97–110..
  • Liu Z, Ran Y, Xi J, et al. Polymeric hybrid aerogels and their biomedical applications. Soft Matter. 2020;16(40):9160–9175.
  • Hu D, Yang Y. Tennis rehabilitation training-assisted paclitaxel nanoparticles in treatment of lung tumor. J Chem. 2020;2020:4916726.
  • González-Nieto D, Fernández-Serra R, Pérez-Rigueiro J, et al. Biomaterials to neuroprotect the stroke brain: a large opportunity for narrow time windows. Cells. 2020;9(5):1074.
  • Ghasemi S, Alavian K, Alavian F. Nanoparticle-based gene therapy intervention for stroke treatment: a systematic review. Curr Gene Ther. 2020;20(5):373–382.
  • Obermeyer JM, Ho E, Gracias A, et al. Influencing neuroplasticity in stroke treatment with advanced biomaterials-based approaches. Adv Drug Deliv Rev. 2019;148:204–218.
  • Olaru D-G, Olaru A, Kassem GH, et al. Toxicity and health impact of nanoparticles. Basic biology and clinical perspective. Rom J Morphol Embryol. 2019;60:787–792.
  • Zhang L, Xu M, Zhu M, et al. Study on the therapeutic and nursing effect of thrombus targeted thrombolysis mediated by recombinant plasminogen activator modified nanoparticles on stroke patients. Mat Express. 2021;11(7):1024–1030.
  • Bernardo-Castro S, Albino I, Barrera-Sandoval ÁM, et al. Therapeutic nanoparticles for the different phases of ischemic stroke. Life. 2021;11(6):482.
  • Kakar S, Smorenburg J. Intranasal administration of chitosan-nanoparticles conjugated with imipramine and its effect on stroke-induced secondary neurodegeneration: a research protocol, undergrad. URNCST J. 2021;5(10):1–7.
  • Chen L, Gao X. The application of nanoparticles for neuroprotection in acute ischemic stroke. Ther Deliv. 2017;8(10):915–928.
  • Li H, Yang Z, Tang Q, et al. Embolic stroke model with magnetic nanoparticles. ACS Appl Mater Interfaces. 2021;13(37):43993–44001.
  • Dong X, Gao J, Su Y, et al. Nanomedicine for ischemic stroke. Int J Mol Sci. 2020;21(20):7600.
  • Poellmann MJ, Bu J, Hong S. Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke? Nanomedicine (Lond). 2018;13(18):2327–2340.
  • Zhao Y, Li D, Zhu Z, et al. Improved neuroprotective effects of gallic acid-loaded chitosan nanoparticles against ischemic stroke. Rejuvenation Res. 2020;23(4):284–292.
  • Bao Q, Hu P, Xu Y, et al. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano. 2018;12(7):6794–6805.
  • Jeong JH, Kang SH, Kim DK, et al. Protective effect of cholic acid-coated poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with erythropoietin on experimental stroke. J Nanosci Nanotechnol. 2019;19(10):6524–6533.
  • Lv W, Xu J, Wang X, et al. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano. 2018;12(6):5417–5426.
  • Deng G, Ma C, Zhao H, et al. Anti-edema and antioxidant combination therapy for ischemic stroke via glyburide-loaded betulinic acid nanoparticles. Theranostics. 2019;9(23):6991–7002.
  • Nucci MP, Filgueiras IS, Ferreira JM, et al. Stem cell homing, tracking and therapeutic efficiency evaluation for stroke treatment using nanoparticles: a systematic review. World J Stem Cells. 2020;12(5):381–405.
  • Amani H, Habibey R, Shokri F, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep. 2019;9:1–15.
  • Huang L, Wang J, Huang S, et al. Polyacrylic acid-coated nanoparticles loaded with recombinant tissue plasminogen activator for the treatment of mice with ischemic stroke. Biochem Biophys Res Commun. 2019;516(2):565–570.
  • Nayak S, Shet VB, Rao CV, et al. Performance evaluation and emission characteristics of a 4 stroke diesel engine using green synthesized silver nanoparticles blended biodiesel. Mater Today Proc. 2018;5(2):7889–7897.
  • Qiang G, Lee I. Kinetics of swelling/shrinking rearrangement of a self-aggregated nanohydrogel at solid/liquid interfaces. J Exp Nanosci. 2011;6(5):509–520..
  • Arizaga A, Ibarz G, Piñol R, et al. Encapsulation of magnetic nanoparticles in a pH-sensitive poly(4-vinyl pyridine) polymer: a step forward to a multi-responsive system. J Exp Nanosci. 2014;9(6):561–569..
  • Wang S, Zhang C, Chang Q. Synthesis of magnetic crosslinked starch-graft-poly(acrylamide)-co-sodium xanthate and its application in removing heavy metal ions. J Exp Nanosci. 2017;12(1):270–284..
  • Goswami S, Bajpai J, Bajpai AK. Calcium alginate nanocarriers as possible vehicles for oral delivery of insulin. J Exp Nanosci. 2014;9(4):337–356..
  • Jamshidi P, Ma P, Khosrowyar K, et al. Tailoring gel modulus using dispersed nanocrystalline hydroxyapatite. J Exp Nanosci. 2012;7(6):652–661..
  • Park KM, Choi JH, Bae JW, et al. Nano-aggregates using thermosensitive chitosan copolymers as a nanocarrier for protein delivery. J Exp Nanosci. 2009;4(3):269–275..
  • Blanco S, Peralta S, Morales ME, et al. Hyaluronate nanoparticles as a delivery system to carry neuroglobin to the brain after stroke. Pharmaceutics. 2020;12(1):40.
  • Zamanlu M, Eskandani M, Barar J, et al. Enhanced thrombolysis using tissue plasminogen activator (tPA)-loaded PEGylated PLGA nanoparticles for ischemic stroke. J Drug Deliv Sci Technol. 2019;53:101165.
  • Hu X, Zhou X, Li Y, et al. Application of stem cells and chitosan in the repair of spinal cord injury. Int J Dev Neurosci. 2019;76:80–85.
  • Mohebbi S, Nezhad MN, Zarrintaj P, et al. Chitosan in biomedical engineering: a critical review. Curr Stem Cell Res Ther. 2019;14(2):93–116.
  • Lin PH, Dong Q, Chew SY. Injectable hydrogels in stroke and spinal cord injury treatment: a review on hydrogel materials, cell–matrix interactions and glial involvement. Mater Adv. 2021;2(8):2561–2583.
  • Zhang Y, Shi N, He L, et al. Silk sericin activates mild immune response and increases antibody production. J Biomed Nanotechnol. 2021;17(12):2433–2443.
  • Nishida A, Yamada M, Kanazawa T, et al. Sustained-release of protein from biodegradable sericin film, gel and sponge. Int J Pharm. 2011;407(1-2):44–52.
  • Arango MC, Montoya Y, Peresin MS, et al. Silk sericin as a biomaterial for tissue engineering: a review. Int J Polym Mater Polym Biomater. 2021;70(16):1115–1129.
  • Li T, Yan G, Bai Y, et al. Papain bioinspired gold nanoparticles augmented the anticancer potency of 5-FU against lung cancer. J Exp Nanosci. 2020;15(1):109–128..
  • Pourabadeh A, Mirjalili M, Shahvazian M. Modification of silk fibroin nanofibers scaffold by PAMAM dendrimer for cell culture. J Exp Nanosci. 2020;15(1):297–306..
  • Noorisafa F, Razmjou A, Emami N, et al. Surface modification of polyurethane via creating a biocompatible superhydrophilic nanostructured layer: role of surface chemistry and structure. J Exp Nanosci. 2016;11(14):1087–1109..
  • Sonamuthu J, Cai Y, Liu H, et al. MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. Int J Biol Macromol. 2020;153:1058–1069..
  • Dai W, Yang Y, Yang Y, et al. Material advancement in tissue-engineered nerve conduit. Nanotechnol Rev. 2021;10(1):488–503.
  • Hasanpour A, Esmaeili F, Hosseini H, et al. Use of mPEG-PLGA nanoparticles to improve bioactivity and hemocompatibility of streptokinase: in-vitro and in-vivo studies. Mater Sci Eng C Mater Biol Appl. 2021;118:111427.
  • Suryawanshi R, Kanoujia J, Parashar P, et al. Sericin: a versatile protein biopolymer with therapeutic significance. Curr Pharm Des. 2020;26(42):5414–5429.
  • Zhang Q, Fan A, Fu J, et al. Precise engineering of iron oxide nanoparticle-encapsulated protein hydrogel: implications for cardiac toxicity and ultrasound contrast agents. Process Biochem. 2021;102:296–303.
  • Luo L, Zang G, Liu B, et al. Bioengineering CXCR4-overexpressing cell membrane functionalized ROS-responsive nanotherapeutics for targeting cerebral ischemia-reperfusion injury. Theranostics. 2021;11(16):8043–8056.
  • Wang Z, Zhang Y, Zhang J, et al. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci Rep. 2014;4:1–11.
  • Sung H, Huang R, Huang LLH, et al. Feasibility study of a natural crosslinking reagent for biological tissue fixation. J Biomed Mater Res. 1998;42(4):560–567.
  • Li X, Wang L, Xiao G, et al. Adhesive tape-assisted etching of silk fibroin film with LiBr aqueous solution for microfluidic devices. Mater Sci Eng C Mater Biol Appl. 2021;118:111543..
  • Sashina ES, Bochek AM, Novoselov NP, et al. Structure and solubility of natural silk fibroin. Russ J Appl Chem. 2006;79(6):869–876..
  • Sohn S, Strey HH, Gido SP. Phase behavior and hydration of silk fibroin. Biomacromolecules. 2004;5(3):751–757..
  • Dong P, Wang H, Xing S, et al. Fluorescent magnetic iron oxide nanoparticle encapsulated protein hydrogel against doxorubicin-associated cardiotoxicity and for enhanced cardiomyocyte survival. J Biomed Nanotechnol. 2020;16(6):922–930.
  • Bari E, Perteghella S, Faragò S, et al. Association of silk sericin and platelet lysate: premises for the formulation of wound healing active medications. Int J Biol Macromol. 2018;119:37–47.
  • Kalantari K, Mostafavi E, Afifi AM, et al. Wound dressings functionalized with silver nanoparticles: promises and pitfalls. Nanoscale. 2020;12(4):2268–2291..
  • Kalaiarasi G, Subarkhan MM, Fathima Safwana CK, et al. New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorg Chim Acta. 2022;535:120863..
  • Mohamed Kasim MS, Sundar S, Rengan R. Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg Chem Front. 2018;5(3):585–596..
  • Mohamed Subarkhan MK, Ramesh R, Liu Y. Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J Chem. 2016;40(11):9813–9823..
  • Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, et al. Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans. 2020;49(32):11385–11395..
  • Subarkhan MKM, Ramesh R. Ruthenium(II) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg Chem Front. 2016;3(10):1245–1255..
  • Jiao G, He X, Li X, et al. Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. RSC Adv. 2015;5(66):53240–53244..
  • Ye G, Tao L, Ma C, et al. Influences of CCK-8 on expressions of apoptosis-related genes in prefrontal cortex neurons of morphine-relapse rats. Neurosci Lett. 2016;631:115–121..
  • Yu S, Zhang X, Tan G, et al. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym. 2017;155:208–217..
  • Kwak HW, Lee KH. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution. Chemosphere. 2018;207:507–516..
  • Kalita H, Hazarika A, Kandimalla R, et al. Development of banana (Musa balbisiana) pseudo stem fiber as a surgical bio-tool to avert post-operative wound infections. RSC Adv. 2018;8(64):36791–36801..
  • Wu P, Liu Q, Li R, et al. Facile preparation of paclitaxel loaded silk fibroin nanoparticles for enhanced antitumor efficacy by locoregional drug delivery. ACS Appl Mater Interfaces. 2013;5(23):12638–12645..
  • Huang W, Ling S, Li C, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev. 2018;47(17):6486–6504..
  • Dorishetty P, Dutta NK, Choudhury NR. Silk fibroins in multiscale dimensions for diverse applications. RSC Adv. 2020;10(55):33227–33247..