933
Views
1
CrossRef citations to date
0
Altmetric
Article

Synthesis, characterization, and antibacterial activities of Cu-Ag bimetallic oxide nanocomposites using Eichhornia crassipes aqueous leaf extract

ORCID Icon, & ORCID Icon
Article: 2202911 | Received 22 Feb 2023, Accepted 05 Apr 2023, Published online: 12 Jun 2023

References

  • Reza A, Khan JM. Water hyacinth as cattle feed. Indian. J Anim Sci. 1981;51(11):1–19.
  • Coles GC, Kabatereine NB. Water hyacinth and the transmission of schistosomiasis. Trans R Soc Trop Med Hyg. 2008;102(6):619–620.
  • Gakwavu R. Zinc and chromium removal mechanisms from industrial wastewater by using water hyacinth, Eichhornia crassipes (mart.) Solms. Appl Ecol Env Res. 2012;10(4):493–502.
  • Young-Hyun L. Cellulose structure modification and hydrolysis. 1st ed., New York (NY): Wiley; 1986. p.1–18.
  • Hemalatha S, Makeswari M. Green synthesis, characterization and antibacterial studies of CuO nanoparticles from Eichhornia crassipes. Rasayan J Chem. 2017;10(3):838–843.
  • Vanathi P, Rajiv P, Narendhran S, et al. Biosynthesis and characterization of phyto mediated zinc oxide nanoparticles: a green chemistry approach. Mater Lett. 2014;134:13–15.
  • Ali H, Patel M, Ganesh N, et al. The world’s worst aquatic plant as a safe cancer medicine-Antitumor activity on melanoma induced mouse by Eichhornia crassipes: in vivo studies. J Pharm Res. 2009;2:1365–1366.
  • Jayanthi P, Lalitha P. Determination of the in vitro reducing power of the aqueous extract of Eichhornia crassipes (Mart.) Solms. J Pharm Res. 2011;4:4003–4005.
  • Brown JC. Agricultural use of synthetic metal chelate. Soil Sci. Soc. Am. Jo. 1969;33(1):59–61.
  • Mathur P, Mathur SM. Water hyacinth: a useful plant to improve the rural economy. Water Sci Technol. 2017;80:31–38.
  • Cerveira-Junior WR, Carvalho LB. Control of water hyacinth: a short review. Commun Plant Sci. 2019;9(1):129–132.
  • Shahawy TAEG. Chemicals with a natural reference for controlling water hyacinth, Eichhornia crassipes (Mart.) Solms. J Plant Prot Res. 2015;55(3):294–300.
  • Admas A, Sahle S, Belete E, et al. Controlling water hyacinth in Lake Tana using a biological method at greenhouse and pond level. Eur J Exp Bio. 2017;7(5):29.
  • Tipping PW, Gettys LA, Minteer CR, et al. Herbivory by biological control agents improves herbicidal control of water hyacinth (Eichhornia crassipes). Invasive Plant Sci Manag. 2017;10(3):271–276.
  • Bindu T, Ramasamy EV. High solids anaerobic digestion for the recovery of energy and manure from Taro (Colocasia esculenta). J Solid Waste Technol Manag. 2005;31(2):69–77.
  • Nagassa D, Belay A. Current status of water hyacinth (Eichhornia crassipes) in Ethiopia: achievements, challenges and prospects: a review. J Environ Earth Sci. 2020;10(10):36–47.
  • Hochella MF. Nanoscience and technology: the next revolution in the earth sciences. Earth Planet Sci. Lett. 2002;203(2):593–605.
  • Beumer K. Broadening nanotechnology’s impact on development. Nat Nanotechnol. 2016;11(5):398–400.
  • Srikar SK, Giri DD, Pal DB, et al. Green synthesis of silver nanoparticles. GSC. 2016;06(01):34–56.
  • Bar H, Sahoo G, Sarkar P, et al. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surface. 2009;339(1-3):134–139.
  • Chandran SP, Chaudhary M, Pasricha R, et al. Synthesis of gold nanotriangles and silver nanoparticles using aloe vera plant extract. Biotechnol Prog. 2006;22(2):577–583.
  • Nemade KR, Waghuley SA. LPG sensing performance of CuO/Ag2O bimetallic oxide nanoparticles. St Petersburg Polytechn Univ J Phys. Math. 2015;1(3):249–255.
  • Zhaoyu J, Panpan L, Guangyue L. Enhancing catalytic formaldehyde oxidation on CuO-Ag2O nanowires for gas sensing and hydrogen evolution. J Mater Chem A. 2013;1:14736–14743.
  • Rahman MM, Alam MM, Hussain MM, et al. Hydrothermally prepared Ag2O/CuO nanomaterial for an efficient chemical sensor development for environmental remediation. Environ Nanotechnol Monit Manag. 2018;10:1–9.
  • Kalaiarasi R, Jayallakshmi, N, Venkatachalam. Phytosynthesis of nanoparticles and its applications – a review. Plant Cell Biotechnol Mol Biol. 2010;11:1–16.
  • Iravani S, Korbekandi H, Mirmohammadi SV, et al. Mechanism and applications of metal nanoparticles prepared by biomediated process. Rev Adv Sci Engng. 2014;3(3):261–274.
  • Prakash P, Gnanaprakasam P, Emmanuel R, et al. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn for enhanced antibacterial activity against multi-drug resistant clinical isolates. Colloids Surf B Biointerfaces. 2013;108:255–259.
  • Fadam MA, Hasan MH, Sarhan AS, et al. Exploiting of green synthesized silver nanoparticles using Capparis spinosa L fruit for spectrophotometric determination of diphenhydramine HCl in pure forms and commercial products. J Exp Nanosci. 2023;18(1):2161525.
  • Mahendran D, Kavi Kishor PB, Geetha N, et al. Efficient antibacterial/biofilm, the anti-cancer and photocatalytic potential of titanium dioxide nanocatalysts green synthesized using Gloriosa superba rhizome extract. J Exp Nanosci. 2021;16(1):11–30.
  • Jinu U, Gomathi M, Saiqa I, et al. Green-engineered biomolecule-capped silver and copper nanohybrids using Prosopis cineraria leaf extract: enhanced antibacterial activity against microbial pathogens of public health relevance and cytotoxicity on human breast cancer cells (MCF-7). Microb Pathog. 2017;105:86–95.
  • Lalitha P, Sripathi S, Jayanthi P. Secondary metabolites of Eichhornia crassipes (Water hyacinth): a review (1949 to 2011). Nat Prod Commun. 2012;7(9):1249–1256.
  • Abate TA, Belay AN. Assessment of antibacterial and antioxidant activity of aqueous crude flower, leaf, and bark extracts of Ethiopian Hibiscus rosa-sinensis Linn: geographical effects and Co2Res2/glassy carbon electrode. Int J Food Prop. 2022;25(1):1875–1889.
  • Keerthika T, Manikandan K, Elangovan N, et al. Enhanced larvicidal, antibacterial, and photocatalytic efficacy of TiO2 nanohybrids green synthesized using the aqueous leaf extract of Parthenium hysterophorus. Environ Sci Pollut Res. 2018;25(11):10328–10339.
  • Taye B, Giday M, Animut A, et al. Antibacterial activities of selected medicinal plants in traditional treatment of human wounds in Ethiopia. Asian Pac J Trop Biomed. 2011;1(5):370–375.
  • Zia F, Ghafoor N, Iqbal M, et al. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Appl Nanosci. 2016;6(7):1023–1029.
  • Aziz WJ, Jassim HA. Green chemistry for the preparation of silver nanoparticles using mint leaf leaves extracts and evaluation of their antimicrobial potential. WNOFNS. 2018;18(2):163–170.
  • Aliesha M, Animesh SD, Mahesh SD, et al. Eichhornia crassipes mediated bioinspired synthesis of crystalline nano silver as an integrated medicinal material: a waste to value approach. J Cluster Sci. 2021;32:391–404.
  • El-Kemary M, El-Shamy H, El-Mehasseb I. Photocatalytic degradation of ciprofloxacin drug in water using ZnO nanoparticles. J Lumen. 2010;130(12):2327–2331.
  • Bouafia A, Laouini SE. Green synthesis of iron oxide nanoparticles by aqueous leaves extract of Mentha pulegium L.: effect of ferric chloride concentration on the type of product. Mater Lett. 2020;265:127364.
  • Xu YY, Bian C, Chen S, et al. A microelectronic technology-based amperometric immunosensor for α-fetoprotein using mixed self-assembled monolayers and gold nanoparticles. Anal Chim Acta. 2006;561(1-2):48–54.
  • Nogueira AE, Giroto AS, Neto ABS, et al. CuO is synthesized by solvothermal methods as a high-capacity adsorbent for hexavalent chromium. Colloids Surf A Phys Eng Asp. 2016;498:162–167.
  • Wankhede YB, Kondawar SB, Thakare SR, et al. Synthesis and characterization of silver nanoparticles embedded in polyaniline nanocomposite. Adv Mater Lett. 2013;4(1):89–93.
  • Kumar H, Manisha K. Synthesis and characterization of silver-oxide nanoparticles by sol-gel method. Int J Adv Res Sci Eng. 2018;7(3):632–637.
  • Taufik A, Saleh R. The influence of graphene on silver oxide synthesis through the microwave-assisted method. AIP Conf Proc. 2018;2023:0200181–0200184.
  • Rajabi A, Ghazali MJ, Mahmoudi E, et al. Development and antibacterial application of nanocomposites: effects of molar ratio on Ag2O-CuO nanocomposite synthesized via the microwave-assisted route. Ceram Int. 2018;44(17):21591–21598.
  • Ravichandran S, Paluri V, Kumar G, et al. A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential. J Exp Nanosci. 2016;11(6):445–458.
  • Holzwarth U, Gibson N. The Scherrer equation versus the Debye-Scherrer equation. Nat Nanotechnol. 2011;6(9):534.
  • Tshireletso P, Ateba CN, Fayemi OE. Spectroscopic and antibacterial properties of CuONPs from orange, lemon, and tangerine peel extracts: potential for combating bacterial resistance. Molecules. 2021;26(3):586.
  • Rodriguez-Mirasol J, Cordero T, Radovic LR, et al. Structural and textural properties of pyrolytic carbon formed within a microporous zeolite template. Chem Mater. 1998;10(2):550–558.
  • Jin Z, Li P, Zheng B, et al. CuO-Ag2O nanoparticles grown on an AgCuZn alloy substrate in situ for use as a highly sensitive nonenzymatic glucose sensor. Anal Methods. 2014;6(7):2215–2220.
  • Kobayashi Y, Shirochi T, Yasuda Y, et al. Synthesis of silver/copper nanoparticles and their metal-metal bonding property. J Min Metall B Metall. 2013;49(1):65–70.
  • Maniecki TP, Mierczynski P, Maniukiewicz W, et al. Bimetallic Au-Cu, Ag-Cu/CrAl3O6 catalysts for methanol synthesis. Catal Lett. 2009;130(3-4):481–488.
  • Yun J, Cho K, Park B, et al. Optical heating of inkjet printable Ag and Ag-Cu nanoparticles. Jpn J Appl Phys. 2008;47(6):5070–5075.
  • Barsan N, Weimar U. Conduction model of metal oxide gas sensors. J Electroceram. 2001;7(3):143–167.