880
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Sustainable mechanical properties evaluation for graphene reinforced Epoxy/Kevlar fiber using MD simulations

, , , , , , & show all
Article: 2246662 | Received 31 Mar 2023, Accepted 29 Jul 2023, Published online: 25 Aug 2023

References

  • Gilman JW, Kashiwagi T, Nyden M, et al. Flammability studies of polymer layered silicate nanocomposites: polyolefin, epoxy, and vinyl ester resins. Chem Technol Polymer Addit. 1999;14:1–19.
  • Gupta TK, Budarapu PR, Chappidi SR, et al. Advances in carbon based nanomaterials for bio-medical applications. Curr Med Chem. 2019;26(38):6851–6877. doi:10.2174/0929867326666181126113605.
  • Kumar PSS, Allamraju KV. A review of natural fiber composites [jute, sisal, kenaf]. Mater Today Proc. 2019;18:2556–2562.
  • Budarapu PR, Yb SS, Javvaji B, et al. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Front Struct Civ Eng. 2014;8(2):151–159. doi:10.1007/s11709-014-0247-9.
  • Sharma K, Saxena KK, Shukla M. Effect of multiple Stone-Wales and vacancy defects on the mechanical behavior of carbon nanotubes using molecular dynamics. Procedia Engin. 2012;38:3373–3380. doi:10.1016/j.proeng.2012.06.390.
  • Saxena KK, Lal A. Comparative molecular dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-Wales and vacancy defects. Procedia Engin. 2012;38:2347–2355. doi:10.1016/j.proeng.2012.06.280.
  • Meyyappan M. Carbon nanotubes: Science and Applications. Florida: CRC Press; 2005.
  • Yu MF, Files BS, Arepalli S, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett. 2000;84(24):5552–5555. doi:10.1103/PhysRevLett.84.5552.
  • Yakobson BI. Mechanical relaxation and “intramolecular plasticity” in carbon nanotubes. Appl Phys Lett. 1998;72(8):918–920. doi:10.1063/1.120873.
  • Yakobson BI, Brabec CJ, Bernholc J. Structural mechanics of carbon nanotubes: from continuum elasticity to atomistic fracture. J Computer-Aided Mater Des. 1996;3(1-3):173–182. doi:10.1007/BF01185652.
  • Lu JP, Han J. Carbon nanotubes and nanotube-based nano devices. Int J Hi Spe Ele Syst. 1998;09(01):101–123. doi:10.1142/S0129156498000063.
  • Yi W, Lu L, Dian-Lin Z, et al. Linear specific heat of carbon nanotubes. Phys Rev B. 1999;59(14):R9015–R9018. doi:10.1103/PhysRevB.59.R9015.
  • Savin AV, Hu B, Kivshar YS. Thermal conductivity of single-walled carbon nanotubes. Phys Rev B. 2009;80(19):195423. doi:10.1103/PhysRevB.80.195423.
  • Zhao J, Dai K, Liu C, et al. A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos Part A Appl Sci Manufact. 2013;48:129–136. doi:10.1016/j.compositesa.2013.01.004.
  • Li D, Liu Y, Lin B, et al. Synthesis of ternary graphene/molybdenum oxide/poly (p-phenylenediamine) nanocomposites for symmetric supercapacitors. RSC Adv. 2015;5(119):98278–98287. doi:10.1039/C5RA18979A.
  • Budarapu PR, Y B SS, Natarajan R. Design concepts of an aircraft wing: composite and morphing airfoil with auxetic structures. Front Struct Civ Eng. 2016;10(4):394–408. doi:10.1007/s11709-016-0352-z.
  • De Volder MF, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;339(6119):535–539. doi:10.1126/science.1222453.
  • Chou T-W, Gao L, Thostenson ET, et al. An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol. 2010;70(1):1–19. doi:10.1016/j.compscitech.2009.10.004.
  • Jat RC, Arora K, Anuragi N, et al. 2015. Carbon nanotubes: advance. Ment in science and technology.
  • Yang K, Wu Z, Zhou C, et al. Comparison of toughening mechanisms in natural silk-reinforced composites with three epoxy resin matrices. Compos Part A Appl Sci Manufact. 2022;154:106760. doi:10.1016/j.compositesa.2021.106760.
  • Haggenmueller R, Gommans HH, Rinzler AG, et al. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett. 2000;330(3-4):219–225. doi:10.1016/S0009-2614(00)01013-7.
  • Manchado ML, Valentini L, Biagiotti J, et al. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon. 2005;43(7):1499–1505. doi:10.1016/j.carbon.2005.01.031.
  • Cadek M, Coleman JN, Ryan KP, et al. Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett. 2004;4(2):353–356. doi:10.1021/nl035009o.
  • Blake R, Coleman JN, Byrne MT, et al. Reinforcement of poly (vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J Mater Chem. 2006;16(43):4206–4213. doi:10.1039/b612305h.
  • Wu C, Xu W. Atomistic molecular modelling of crosslinked epoxy resin. Polymer. 2006;47(16):6004–6009. doi:10.1016/j.polymer.2006.06.025.
  • Gupta TK, Singh BP, Dhakate SR, et al. Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A. 2013;1(32):9138–9149. doi:10.1039/c3ta11611e.
  • Navneeth V, Sankar SP, Prasanth RS, et al. Investigation on the mechanical and stealth behavior of CNT based polymer composites. Mater Today Proc. 2021;39:1682–1687. doi:10.1016/j.matpr.2020.06.152.
  • Patel V, Joshi U, Joshi A. Investigating the mechanical properties of nonfunctionalized MWCNT reinforced polymer nanocomposites. Mater Today Proc. 2021;43:3511–3515. doi:10.1016/j.matpr.2020.09.812.
  • Dikshit MK, Engle PE. Investigation of mechanical properties of CNT reinforced epoxy nanocomposite: a molecular dynamic simulations. Mater Phys Mechan. 2018;37(1):224–233.
  • Thomas S ,Joseph K ,Malhotra SK, et al. (Eds.). Polymer composites, macro-and microcomposites. Vol. 1. Germany: John Wiley & Sons; 2012.
  • Xiang C, Lu W, Zhu Y, et al. Carbon nanotube and graphene nanoribbon-coated conductive kevlar fibers. ACS Appl Mater Interfaces. 2012;4(1):131–136. doi:10.1021/am201153b.
  • Bencomo-Cisneros JA, Tejeda-Ochoa A, García-Estrada JA, et al. Characterization of kevlar-29 fibers by tensile tests and nanoindentation. J Alloys Compd. 2012;536: S456–S459. doi:10.1016/j.jallcom.2011.11.031.
  • Nair AN, Sundharesan S, Al Tubi ISM. Kevlar-based composite material and its applications in body armour: a short literature review. IOP Conf Ser Mater Sci Eng. 2020;987(1):012003. doi:10.1088/1757-899X/987/1/012003.
  • George K, Biswal M, Mohanty S, et al. Nanosilica filled EPDM/kevlar fiber hybrid nanocomposites: Mechanical and thermal properties. Mater Today: proc. 2021;41:983–986. doi:10.1016/j.matpr.2020.02.817.
  • Mourad AHI, Idrisi AH, Zaaroura N, et al. Damage assessment of nanofiller-reinforced woven kevlar KM2plus/epoxy resin laminated composites. Polymer Testing. 2020;86:106501. doi:10.1016/j.polymertesting.2020.106501.
  • Taraghi I, Fereidoon A, Mohyeddin A. The effect of MWCNTs on the mechanical properties of woven kevlar/epoxy composites. Steel Compos Struct. 2014;17(6):825–834. doi:10.12989/scs.2014.17.6.825.
  • Alsaadi M, Younus B, Erklig A, et al. Effect of graphene nano-platelets on mechanical and impact characteristics of carbon/kevlar reinforced epoxy hybrid nanocomposites. Proc Instit Mechan Engin Part C J Mechan Engin Sci. 2021;235(23):7139–7151. doi:10.1177/09544062211016883.
  • Sharma S, Pathak AK, Singh VN, et al. Excellent mechanical properties of long multiwalled carbon nanotube bridged kevlar fabric. Carbon. 2018;137:104–117. doi:10.1016/j.carbon.2018.05.017.
  • Madarvoni S, Ps Rama S. Dynamic mechanical behaviour of graphene, hexagonal boron nitride reinforced carbon-kevlar, hybrid fabric-based epoxy nanocomposites. Polym Polym Compos. 2022;30: doi:10.1177/09673911221107289.
  • Madarvoni S, Sreekanth RP. Mechanical characterization of graphene—hexagonal boron Nitride-Based kevlar–carbon hybrid fabric nanocomposites. Polymers. 2022;14(13):2559. doi:10.3390/polym14132559.
  • Shiju J, Al-Sagheer F, Ahmad Z. Thermal mechanical properties of graphene nano-composites with Kevlar-Nomex copolymer: a comparison of the physical and chemical interactions. Polymers. 2020;12(11):2740. doi:10.3390/polym12112740.
  • Wu C, Xu W. Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polymer. 2007;48(19):5802–5812. doi:10.1016/j.polymer.2007.07.019.
  • Zhang L, Xiong D, Su Z, et al. Molecular dynamics simulation and experimental study of tin growth in SAC lead-free microsolder joints under thermo-mechanical-electrical coupling. Mater Today Commun. 2022;33:104301. doi:10.1016/j.mtcomm.2022.104301.
  • Li C, Strachan A. Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polymer. 2011;52(13):2920–2928. doi:10.1016/j.polymer.2011.04.041.
  • Tack JL, Ford DM. Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics. J Mol Graph Model. 2008;26(8):1269–1275. doi:10.1016/j.jmgm.2007.12.001.
  • Dikshit MK, Nair GS, Pathak VK, et al. Investigation of mechanical properties of graphene reinforced epoxy nanocomposite using molecular dynamics. Mater Phys Mechan. 2019;42(2):224–233.
  • Chaudhary N, Dikshit MK. A state of art review on the graphene and carbon nanotube reinforced nanocomposites: a molecular dynamics approach. Mater Today Proc. 2021;47:3235–3241.
  • Shokuhfar A, Arab B. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation. J Mol Model. 2013;19(9):3719–3731. doi:10.1007/s00894-013-1906-9.
  • Yang HH. Kevlar aramid fiber. New York (NY): John Wiley & Sons: 1991.
  • Chowdhury SC, Sockalingam S, Gillespie JW.Jr, Molecular dynamics modeling of the effect of axial and transverse compression on the residual tensile properties of ballistic fiber. Fibers. 2017;5(1):7. doi:10.3390/fib5010007.
  • Qi B, Zhang QX, Bannister M, et al. Investigation of the mechanical properties of DGEBA-based epoxy resin with nanoclay additives. Compos Struct. 2006;75(1-4):514–519. doi:10.1016/j.compstruct.2006.04.032.
  • Al Mahmud H, Radue MS, Chinkanjanarot S, et al. Multiscale modeling of epoxy-based nanocomposites reinforced with functionalized and non-functionalized graphene nanoplatelets. Polymers. 2021;13(12):1958. doi:10.3390/polym13121958.
  • Yadav A, Kumar A, Sharma K, et al. Determination of elastic constants of functionalized graphene-based epoxy nanocomposites: a molecular modeling and MD simulation study. J Mol Model. 2022;28(6):143. doi:10.1007/s00894-022-05134-7.
  • Wazalwar R, Sahu M, Raichur AM. Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: current status and road to industrialization. Nanoscale Adv. 2021;3(10):2741–2776. doi:10.1039/d1na00050k.
  • Gholizadeh R, Wang Y. Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation. Chem Eng Sci. 2018;184:62–71. doi:10.1016/j.ces.2018.03.045.
  • Sun H, Jin Z, Yang C, et al. COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model. 2016;22(2):47. doi:10.1007/s00894-016-2909-0.
  • Kumar A, Sharma K, Dixit AR. A review on the mechanical and thermal properties of graphene and graphene-based polymer nanocomposites: understanding of modelling and MD simulation. Mol Simul. 2020;46(2):136–154. doi:10.1080/08927022.2019.1680844.
  • Yadav A, Kumar A, Singh PK, et al. Glass transition temperature of functionalized graphene epoxy composites using molecular dynamics simulation. Integr Ferroelectr. 2018;186(1):106–114. doi:10.1080/10584587.2017.1370331.
  • Chaudhary N, Dikshit MK. Study of the cross-linking density effect on the mechanical properties of h-BNNS reinforced epoxy nanocomposite part-1: a molecular dynamics simulation. J Mol Model. 2023;29(5):146. doi:10.1007/s00894-023-05552-1.
  • Zhang W, Kang S, Liu X, et al. Experimental study of a composite beam externally bonded with a carbon fiber-reinforced plastic plate. J Build Engin. 2023;71:106522. doi:10.1016/j.jobe.2023.106522.