575
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Precise construction of Regorafenib-loaded gold nanoparticles: investigation of antiproliferative activity and apoptosis induction in liver cancer cells

, , &
Article: 2254006 | Received 08 Jun 2023, Accepted 24 Aug 2023, Published online: 11 Sep 2023

References

  • Balogh J, Victor D, III, Asham EH, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:1–16. doi: 10.2147/JHC.S61146.
  • Befeler AS, Di Bisceglie AM. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology. 2002;122(6):1609–1619. doi: 10.1053/gast.2002.33411.
  • Bruix J, Gores GJ, Mazzaferro V. Hepatocellular carcinoma: clinical frontiers and perspectives. Gut. 2014;63(5):844–855. doi: 10.1136/gutjnl-2013-306627.
  • Yang JD, Roberts LR. Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol. 2010;7(8):448–458. doi: 10.1038/nrgastro.2010.100.
  • Motola-Kuba D, Zamora-Valdés D, Uribe M, et al. Hepatocellular carcinoma. An overview. Ann Hepatol. 2006;5(1):16–24. doi: 10.1016/S1665-2681(19)32034-4.
  • Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol. 2008;48 Suppl 1: s20–S37. doi: 10.1016/j.jhep.2008.01.022.
  • Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31(4):339–346. doi: 10.1038/ng0802-339.
  • Pandey V, Haider T, Chandak AR, et al. Surface modified silk fibroin nanoparticles for improved delivery of doxorubicin: development, characterization, in-vitro studies. Int J Biol Macromol. 2020;164:2018–2027. doi: 10.1016/j.ijbiomac.2020.07.326.
  • Wang Q, Li WL, Zou HY, et al. Nonstoichiometric Cu2 − xSe nanocrystals in situ produced on the surface of carbon nanotubes for ablation of tumor cells. New J. Chem. 2016;40(7):6315–6324. doi: 10.1039/C5NJ03379A.
  • Liu Y, Chen Z, Liu C, et al. Gadolinium-loaded polymeric nanoparticles modified with anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials. 2011;32(22):5167–5176. doi: 10.1016/j.biomaterials.2011.03.077.
  • Shi S, Chen X, Wei J, et al. Platinum(IV) prodrug conjugated Pd@Au nanoplates for chemotherapy and photothermal therapy. Nanoscale. 2016;8(10):5706–5713. doi: 10.1039/c5nr09120a.
  • Tambe P, Kumar P, Paknikar KM, et al. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. Int J Nanomedicine. 2018;13:7669–7680. doi: 10.2147/IJN.S184634.
  • Paroha S, Verma J, Dubey RD, et al. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm. 2021;592:120043. doi: 10.1016/j.ijpharm.2020.120043.
  • Rana A, Yadav K, Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: mechanism, application and toxicity. J Cleaner Prod. 2020;272:122880. doi: 10.1016/j.jclepro.2020.122880.
  • Balachandran S. Magnetic nanoparticles for cancer treatment. In: Magnetic nanoparticles. Singapore: Springer, 2021: pp. 133–147.
  • Caizer IS, Caizer C. Superparamagnetic hyperthermia study with cobalt ferrite nanoparticles covered with γ-Cyclodextrins by computer simulation for application in alternative cancer therapy. Int J Mol Sci. 2022;23(8):4350. doi: 10.3390/ijms23084350.
  • Chung CYS, Fung SK, Tong KC, et al. A multi-functional PEGylated gold(iii) compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem Sci. 2017;8(3):1942–1953. doi: 10.1039/c6sc03210a.
  • Kim J, Pramanick S, Lee D, et al. Polymeric biomaterials for the delivery of platinum-based anticancer drugs. Biomater Sci. 2015;3(7):1002–1017. doi: 10.1039/c5bm00039d.
  • Han W, Shi L, Ren L, et al. A nanomedicine approach enables co-delivery of cyclosporin a and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal Transduct Target Ther. 2018;3(1):16. doi: 10.1038/s41392-018-0019-4.
  • Parker JP, Ude Z, Marmion CJ. Exploiting developments in nanotechnology for the preferential delivery of platinum-based anti-cancer agents to tumours: targeting some of the hallmarks of cancer. Metallomics. 2016;8(1):43–60. doi: 10.1039/c5mt00181a.
  • Shen J, He Q, Gao Y, et al. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism. Nanoscale. 2011;3(10):4314–4322. doi: 10.1039/c1nr10580a.
  • Delplace V, Couvreur P, Nicolas J. Recent trends in the design of anticancer polymer prodrug nanocarriers. Polym Chem. 2014;5(5):1529–1544. doi: 10.1039/C3PY01384G.
  • Xu X, Yu Y, Liu M, et al. Efficacy and safety of regorafenib and fruquintinib as third-line treatment for colorectal cancer: a narrative review. Transl Cancer Res. 2022;11(1):276–287. doi: 10.21037/tcr-20-3539.
  • Pazoki-Toroudi HR, Hesami A, Vahidi S, et al. The preventive effect of captopril or enalapril on reperfusion injury of the kidney of rats is independent of angiotensin II AT1 receptors. Fundam Clin Pharmacol. 2003;17(5):595–598. doi: 10.1046/j.1472-8206.2003.00188.x.
  • Zhao P, Wang Y, Kang X, et al. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem Sci. 2018;9(10):2674–2689. doi: 10.1039/C7SC04853J.
  • Sravani B, Kiranmai S, Rajasekhara Reddy G, et al. Highly sensitive detection of anti-cancer drug based on bimetallic reduced graphene oxide nanocomposite. Chemosphere. 2022;287(Pt 3):132281. doi: 10.1016/j.chemosphere.2021.132281.
  • Wang R, Liu Y, Mi X, et al. Sirt3 promotes hepatocellular carcinoma cells sensitivity to regorafenib through the acceleration of mitochondrial dysfunction. Arch Biochem Biophys. 2020;689:108415. doi: 10.1016/j.abb.2020.108415.
  • Ervin SM, Hanley RP, Lim L, et al. Targeting Regorafenib-Induced toxicity through inhibition of gut microbial β-Glucuronidases. ACS Chem Biol. 2019;14(12):2737–2744. doi: 10.1021/acschembio.9b00663.
  • Zhou Z. Co-drug delivery of regorafenib and cisplatin with amphiphilic copolymer nanoparticles: enhanced in vivo antitumor cancer therapy in nursing care. Drug Deliv. 2020;27(1):1319–1328. doi: 10.1080/10717544.2020.1815897.
  • Khan K, Cascinu S, Cunningham D, et al. Imaging and clinical correlates with regorafenib in metastatic colorectal cancer. Cancer Treat Rev. 2020;86:102020. doi: 10.1016/j.ctrv.2020.102020.
  • Vinita NR, Nirala RP. One step synthesis of AuNPs@MoS2-QDs composite as a robust peroxidase-mimetic for instant unaided eye detection of glucose in serum, saliva and tear. Sensor Actuat B: Chem. 2018;263:109–119. doi: 10.1016/j.snb.2018.02.085.
  • Zhu X, Han W, Liu Y, et al. Rational design of a prodrug to inhibit self-inflammation for cancer treatment. Nanoscale. 2021;13(11):5817–5825. doi: 10.1039/D1NR00132A.
  • Maqsood H, Uroos M, Muazzam R, et al. Extraction of basil seed mucilage using ionic liquid and preparation of AuNps/mucilage nanocomposite for catalytic degradation of dye. Int J Biol Macromol. 2020;164:1847–1857. doi: 10.1016/j.ijbiomac.2020.08.073.
  • Mohan N, Mohamed Subarkhan MK, Ramesh R. Synthesis, antiproliferative activity and apoptosis-promoting effects of arene ruthenium(II) complexes with N, O chelating ligands. J Organomet Chem. 2018;859:124–131. doi: 10.1016/j.jorganchem.2018.01.022.
  • Mohamed Kasim MS, Sundar S, Rengan R. Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: investigation on antiproliferative activity and apoptosis induction. Inorg. Chem. Front. 2018;5(3):585–596. doi: 10.1039/C7QI00761B.
  • Subarkhan MKM, Ramesh R. Ruthenium(II) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg. Chem. Front. 2016;3(10):1245–1255. doi: 10.1039/C6QI00197A.
  • Raj Kumar R, Mohamed Subarkhan MK, Ramesh R. Synthesis and structure of nickel(ii) thiocarboxamide complexes: effect of ligand substitutions on DNA/protein binding, antioxidant and cytotoxicity. RSC Adv. 2015;5(58):46760–46773. doi: 10.1039/C5RA06112A.
  • Giriraj K, Mohamed Kasim MS, Balasubramaniam K, et al. Various coordination modes of new coumarin schiff bases toward cobalt(III) ion: synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organom Chemis. 2022;36(3):e6536. doi: 10.1002/aoc.6536.
  • Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, et al. Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans. 2020;49(32):11385–11395. doi: 10.1039/D0DT01476A.
  • Mohamed Subarkhan MK, Ren L, Xie B, et al. Novel tetranuclear ruthenium(II) arene complexes showing potent cytotoxic and antimetastatic activity as well as low toxicity in vivo. Eur J Med Chem. 2019;179:246–256. doi: 10.1016/j.ejmech.2019.06.061.
  • Swaminathan S, Haribabu J, Mohamed Subarkhan MK, et al. Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans. 2021;50(44):16311–16325. doi: 10.1039/D1DT02611A.
  • Swaminathan S, Haribabu J, Mohamed Subarkhan MK, et al. Coordination behavior of acylthiourea ligands in their Ru(II)–benzene complexes—structures and anticancer activity. Organometallics. 2022;41(13):1621–1630. doi: 10.1021/acs.organomet.2c00127.
  • Pilliadugula R, Haribabu J, Mohamed Subarkhan MK, et al. Effect of morphology and (Sn, Cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J Sci: Adv Mater Devices. 2021;6(3):351–363. doi: 10.1016/j.jsamd.2021.03.003.
  • Kalaiarasi G, Mohamed Subarkhan M, Fathima Safwana CK, et al. New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorg Chim Acta. 2022;535:120863. doi: 10.1016/j.ica.2022.120863.
  • Mohamed Subarkhan MK, Ramesh R, Liu Y. Synthesis and molecular structure of arene ruthenium(II) benzhydrazone complexes: impact of substitution at the chelating ligand and arene moiety on antiproliferative activity. New J. Chem. 2016;40(11):9813–9823. doi: 10.1039/C6NJ01936F.
  • Balaji S, Mohamed Subarkhan MK, Ramesh R, et al. Synthesis and structure of arene Ru(II) N∧O-Chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics. 2020;39(8):1366–1375. doi: 10.1021/acs.organomet.0c00092.
  • Gao X, Zheng Y, Ruan X, et al. Salinomycin induces primary chicken cardiomyocytes death via mitochondria mediated apoptosis. Chem Biol Interact. 2018;282:45–54. doi: 10.1016/j.cbi.2018.01.009.
  • Edlich A, Volz P, Brodwolf R, et al. Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin. Biomaterials. 2018;162:60–70. doi: 10.1016/j.biomaterials.2018.01.058.
  • Wang X-P, Wang Q-X, Lin H-P, et al. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma. Food Funct. 2017;8(9):3319–3326. doi: 10.1039/C7FO00555E.
  • Ke Y, Al Aboody MS, Alturaiki W, et al. Photosynthesized gold nanoparticles from catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa. Artif Cells Nanomed Biotechnol. 2019;47(1):1938–1946.) doi: 10.1080/21691401.2019.1614017.
  • Li Y, Yu H, Zhao L, et al. Effects of carbon nanotube-mediated Caspase3 gene silencing on cardiomyocyte apoptosis and cardiac function during early acute myocardial infarction. Nanoscale. 2020;12(42):21599–21604. doi: 10.1039/D0NR05032F.
  • Zeng C, Guo B, Chen J, et al. Antitumor effects of chrysophanol in malignant optic nerve meningioma cell lines are mediated via caspase activation, induction of mitochondrial mediated apoptosis, mitochondrial membrane depolarization and targeting the mitogen-activated protein kinase S. Pharmacology. 2019;104(1–2):28–35. doi: 10.1159/000499336.
  • Dheyab MA, Aziz AA, Khaniabadi PM, et al. Gold nanoparticles-based photothermal therapy for breast cancer. Photodiagnosis Photodyn Ther. 2023;42:103312. doi: 10.1016/j.pdpdt.2023.103312.
  • Hu X, Li X, Zhang Y, et al. Multi-wavelength output based on gold nanoparticles in erbium-doped fiber lasers. Appl. Opt. 2020;59(10):3196–3202. doi: 10.1364/AO.388605.
  • Cho J-H, Kim A-R, Kim S-H, et al. Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater. 2017;47:182–192. doi: 10.1016/j.actbio.2016.10.009.
  • Pang X-L, He G, Liu Y-B, et al. Endoplasmic reticulum stress sensitizes human esophageal cancer cell to radiation. World J Gastroenterol. 2013;19(11):1736–1748. doi: 10.3748/wjg.v19.i11.1736.
  • Amini N, Abdul Majid FA, Marvibaigi M, et al. CervicareTM induces apoptosis in HeLa and CaSki cells through ROS production and loss of mitochondrial membrane potential. RSC Adv. 2016;6(29):24391–24417. doi: 10.1039/C5RA25654B.
  • Li X, Gao Y. Synergistically fabricated polymeric nanoparticles featuring dual drug delivery system to enhance the nursing care of cervical cancer. Process Biochem. 2020;98:254–261. doi: 10.1016/j.procbio.2020.09.010.