64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Alginate-wrapped NiO-ZnO nanocomposites-based catalysts for water treatment

&
Article: 2375787 | Received 30 Dec 2023, Accepted 29 Jun 2024, Published online: 18 Jul 2024

References

  • Drinkwater M, Kerr Y, Font J, et al. Exploring the water cycle of the blue planet. The Soil Moisture and Ocean Salinity mission. ESA Bull-Eur Space; 2009.
  • Elgarahy AM, Elwakeel KZ, Akhdhar A, et al. Recent advances in greenly synthesized nanoengineered materials for water/wastewater remediation: an overview. Nanotechnol. Environ. Eng. 2021;6(1):1–24. doi: 10.1007/s41204-021-00104-5.
  • Nestola F, Smyth JR. Diamonds and water in the deep Earth: a new scenario. Int Geol Rev. 2016;58(3):263–276. doi: 10.1080/00206814.2015.1056758.
  • Pashaei-Fakhri S, Peighambardoust SJ, Foroutan R, et al. Chemosphere crystal violet dye sorption over acrylamide/graphene oxide bonded sodium alginate nanocomposite hydrogel. Chemosphere. 2021;270:129419. doi: 10.1016/j.chemosphere.2020.129419.
  • Jayalakshmi R, Jeyanthi J. Dynamic modelling of alginate-cobalt ferrite nanocomposite for removal of binary dyes from textile effluent. J Environ Chem Eng. 2021;9(1):104924. doi: 10.1016/j.jece.2020.104924.
  • Omer AM, Tamer TM, Abou-Taleb WM, et al. Development of iron oxide nanoparticles using alginate hydrogel template for chromium (VI) ions removal. DWT. 2020;175:229–243. doi: 10.5004/dwt.2020.24916.
  • McDonald RI, Green P, Balk D, et al. Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci U S A. 2011;108(15):6312–6317. doi: 10.1073/pnas.1011615108.
  • Baruah S, Najam M, Joydeep K. Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett. 2016;14(1):1–14. doi: 10.1007/s10311-015-0542-2.
  • Bakhsh EM, Akhtar K, Fagieh TM, et al. International Journal of Biological Macromolecules Development of alginate @ tin oxide – cobalt oxide nanocomposite based catalyst for the treatment of wastewater. Int J Biol Macromol. 2021;187:386–398. doi: 10.1016/j.ijbiomac.2021.07.100.
  • Opoku F, Kiarii EM, Govender PP, et al. Metal oxide polymer nanocomposites in water treatments. London (UK): IntechOpen; 2017, vol. 8.
  • Goikuria U. Effect of metal-oxide nanoparticle presence and alginate cross-linking on cellulose nanocrystal-based aerogels. J App Pol Sci. 2021. doi: 10.1002/app.50639.
  • Gade R, Ahemed J, Yanapu KL, et al. Photodegradation of organic dyes and industrial wastewater in the presence of layer-type perovskite materials under visible light irradiation. J Environ Chem Eng. 2018;6(4):4504–4513. doi: 10.1016/j.jece.2018.06.057.
  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71. doi: 10.1116/1.2815690.
  • Pachapur VL, Larios AD, Cledón M, et al. Behavior and characterization of titanium dioxide and silver nanoparticles in soils. Sci Total Environ. 2016;563-564:933–943. doi: 10.1016/j.scitotenv.2015.11.090.
  • Lu H, Wang J, Stoller M, et al. An Overview of Nanomaterials for Water and Wastewater Treatment. Adv in Mat Sci and Eng. 2016;2016:1–10. vol. doi: 10.1155/2016/4964828.
  • Zahid M, Nadeem N, Mansha A, et al. Hybrid nanomaterials for water purification. In: Multifunctional hybrid nanomaterials for sustainable agri-food and nanomaterials; 2020.155–188. doi: 10.1016/B978-0-12-821354-4.00007-8.
  • Mahmoud ME, Saleh MM, Zaki MM, et al. A sustainable nanocomposite for removal of heavy metals from water based on crosslinked sodium alginate with iron oxide waste material from steel industry. J Environ Chem Eng. 2020;8(4):104015. doi: 10.1016/j.jece.2020.104015.
  • Markovi D, Tseng H, Nunney T, et al. Applied Surface Science Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles. App Surf Sci. 2020;527:146829. doi: 10.1016/j.apsusc.2020.146829.
  • Sarkar S, Guibal E, Quignard F, et al. Polymer-supported metals and metal oxide nanoparticles: synthesis, characterization, and applications. J Nanopart Res. 2012;14(2):1–24. doi: 10.1007/s11051-011-0715-2.
  • Schnepp Z, Wimbush SC, Mann S, et al. Alginate-mediated routes to the selective synthesis of complex metal oxide nanostructures. CrystEngComm. 2010;12(5):1410–1415. doi: 10.1039/b923543b.
  • Annu AA, Ahmed S. Green synthesis of metal, metal oxide nanoparticles, and their various applications. Handbook Ecomater. 2018;2018:1–45.
  • Bibi A, Rehman S, Yaseen A. Alginate-nanoparticles composites: kinds, reactions and applications. Mater. Res. Express. 2019;6(9):092001. doi: 10.1088/2053-1591/ab2016.
  • Cheung L. Properties of hydrogels incorporating graphene oxide-based nanoparticles for tissue engineering purposes. University of Waterloo; 2016.
  • Borkowski D, Krucińska I, Draczyński Z. Preparation of nanocomposite alginate fibers modified with titanium dioxide and zinc oxide. Polymers (Basel). 2020;12(5):1040. doi: 10.3390/polym12051040.
  • Zhang K, Luo X, Yang L, et al. Progress toward hydrogels in removing heavy metals from water : problems and solutions: a review. ACS Est Water. 2021;1(5):1098–1116. doi: 10.1021/acsestwater.1c00001.
  • Hurtado A, Aljabali AAA, Mishra V, et al. Alginate: enhancement strategies for advanced applications. Int J Mol Sci. 2022;23(9):4486. doi: 10.3390/ijms23094486.
  • Priya VN, Rajkumar M, Mobika J, et al. Alginate coated layered double hydroxide/reduced graphene oxide nanocomposites for removal of toxic As (V) from wastewater. Physica E Low Dimens Syst Nanostruct. 2021;127:114527. doi: 10.1016/j.physe.2020.114527.
  • Satriaji KP, Garcia CV, Kim GH, et al. Antibacterial bionanocomposite films based on CaSO4-crosslinked alginate and zinc oxide nanoparticles. Food Packag Shelf Life. 2020;24:100510. doi: 10.1016/j.fpsl.2020.100510.
  • Thakur S. An overview on alginate based bio-composite materials for wastewater remedial. Mater Today Proc. 2021;37:3305–3309. doi: 10.1016/j.matpr.2020.09.120.
  • Mohammadi A, Hossein A, Mahmood K. International Journal of Biological Macromolecules Alginate/calix [4] arenes modi fi ed graphene oxide nanocomposite beads: Preparation, characterization, and dye adsorption studies. Int J Biol Macromol. 2018;120:1353–1361. doi: 10.1016/j.ijbiomac.2018.09.136.
  • Priyan I, Fernando S, Lee W, et al. Alginate-based nanomaterials : Fabrication techniques, properties, and applications. Chem. Eng. J. 2020;391:123823. doi: 10.1016/j.cej.2019.123823.
  • Polymers I, Review GA, Falah M. Photocatalytic nanocomposite materials based on catalysts. 2020.
  • Masula K, Sreedhar P, Vijay Kumar P, et al. Synthesis and characterization of NiO–Bi2O3 nanocomposite material for effective photodegradation of the dyes and agricultural soil pollutants. Mater Sci Semicond Process. 2023;160:107432. doi: 10.1016/j.mssp.2023.107432.
  • Nasrollahzadeh M, Sajjadi M, Iravani S, et al. materials for sustainable water treatment : a review. Carbohydr Polym. 2021;251:116986. doi: 10.1016/j.carbpol.2020.116986.
  • Baek S, Joo SH, Toborek M. Treatment of antibiotic-resistant bacteria by encapsulation of ZnO nanoparticles in an alginate biopolymer: insights into treatment mechanisms. J Hazard Mater. 2019;373:122–130. doi: 10.1016/j.jhazmat.2019.03.072.
  • Masula K, Bhongiri Y, Raghav Rao G, et al. Evolution of photocatalytic activity of CeO2–Bi2O3 composite material for wastewater degradation under visible-light irradiation. Opt Mater (Amst). 2022;126:112201. doi: 10.1016/j.optmat.2022.112201.
  • Xiao D, He M, Liu Y, et al. Strong alginate/reduced graphene oxide composite hydrogels with enhanced dye adsorption performance. Polym. Bull. 2020;77(12):6609–6623. doi: 10.1007/s00289-020-03105-7.
  • Bakhsh EM, Akhtar K, Fagieh TM, et al. Sodium alginate nanocomposite based efficient system for the removal of organic and inorganic pollutants from wastewater. Int J Biol Macromol. 2021;191:243–254. doi: 10.1016/j.ijbiomac.2021.09.029.
  • Radoor S, Karayil J, Parameswaranpillai J, et al. Removal of anionic dye Congo red from aqueous environment using polyvinyl alcohol/sodium alginate/ZSM – 5 zeolite membrane. Sci Rep. 2020;10(1):15452. doi: 10.1038/s41598-020-72398-5.
  • Makhado E, Pandey S, Modibane KD, et al. Sequestration of methylene blue dye using sodium alginate poly (acrylic acid)@ ZnO hydrogel nanocomposite: kinetic, isotherm, and thermodynamic investigations. Int J Biol Macromol. 2020;162:60–73. doi: 10.1016/j.ijbiomac.2020.06.143.
  • Talbot D, Abramson S, Griffete N, et al. pH-sensitive magnetic alginate/γ-Fe2O3 nanoparticles for adsorption/desorption of a cationic dye from water. J Water Process Eng. 2018;25:301–308. doi: 10.1016/j.jwpe.2018.08.013.
  • Zheng Y, Wang A. Ag nanoparticle-entrapped hydrogel as promising material for catalytic reduction of organic dyes. J. Mater. Chem. 2012;22(32):16552–16559. doi: 10.1039/c2jm32774k.
  • Nazim M, Aslam A, Khan P, et al. Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature. ACS Omega. 2021;6(4):2601–2612. doi: 10.1021/acsomega.0c04747.
  • Chen J, Spear SK, Huddleston JG, et al. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem. 2005;7(2):64–82. doi: 10.1039/b413546f.
  • Chequer FMD, Oliveira GARD, Ferraz ERA, et al. Textile dyes: dyeing process and environmental impact. Eco-Friendly Textile Dyeing Finish. 2013;6(6):151–176.
  • Lu CS, Mai FD, Wu CW, et al. Titanium dioxide-mediated photocatalytic degradation of acridine orange in aqueous suspensions under UV irradiation. Dyes Pigm. 2008;76(3):706–713. doi: 10.1016/j.dyepig.2007.01.009.
  • El-Monaem EMA, El-Latif MMA, Eltaweil AS, et al. Cobalt nanoparticles supported on reduced amine-functionalized graphene oxide for catalytic reduction of nitroanilines and organic dyes. Nano. 2021;16(04):2150039. doi: 10.1142/S1793292021500399.
  • Sarkar D, Xie X, Kang J, et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. Nano Lett. 2015;15(5):2852–2862. doi: 10.1021/nl504454u.
  • Ismail M, Khan MI,. Bahadar S, et al. Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J Mol Liq. 2018;268:87–101. doi: 10.1016/j.molliq.2018.07.030.
  • Marimuthu S, Antonisamy AJ, Malayandi S, et al. Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobiol B. 2020;205:111823. doi: 10.1016/j.jphotobiol.2020.111823.
  • Hashmi SS, Shah M, Muhammad W, et al. Potentials of phyto-fabricated nanoparticles as ecofriendly agents for photocatalytic degradation of toxic dyes and waste water treatment, risk assessment and probable mechanism. J Indian Chem Soc. 2021;98(4):100019. doi: 10.1016/j.jics.2021.100019.
  • Yang J, Chen C, Ji H, et al. Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation : photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B. 2005;109(46):21900–21907. doi: 10.1021/jp0540914.
  • Lu CS, Chen CC, Huang LK, et al. Photocatalytic degradation of acridine orange over NaBiO3 driven by visible light irradiation. Catalysts. 2013;3(2):501–516. doi: 10.3390/catal3020501.
  • Azad UP, Ganesan V, Pal M. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants. J Nanopart Res. 2011;13(9):3951–3959. doi: 10.1007/s11051-011-0317-z.
  • Naseem K, Begum R, Wu W, et al. Catalytic reduction of toxic dyes in the presence of silver nanoparticles impregnated core-shell composite microgels. J Clean Prod. 2019;211:855–864. doi: 10.1016/j.jclepro.2018.11.164.