2,813
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Emergent methods to synthesize and characterize semiconductor CuO nanoparticles with various morphologies – an overview

&
Pages 23-56 | Received 08 Aug 2006, Accepted 30 Oct 2006, Published online: 01 Dec 2010

References

  • Wang , ZL . 2003 . Nanowires and Nanobelts: Materials, Properties and Devices , Vol. 1-2 , Boston : Kluwer Academic Publisher .
  • Iijima , S and Ichihashi , T . 1993 . Single-shell carbon nanotubes of 1 nm diameter . Nature , 363 : 603
  • Wen , JG , Lao , JY , Wang , DZ , Kyaw , TM , Foo , YL and Ren , ZF . 2003 . Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons . Chem. Phys. Lett. , 372 : 717
  • Patzke , GR , Krumeich , F and Nesper , R . 2002 . Oxidic nanotubes and nanorods -- anisotropic modules for a future nanotechnology . Angew. Chem. Int. Ed. , 41 : 2446
  • Nabarro , FRN and Jackson , PJ . 1958 . “ Growth of crystal whiskers ” . In Growth and Perfection of Crystal Growth , Edited by: Doremus , R.H. , Roberts , B.W. and Turnbull , D. 13 – 120 . New York : Wiley .
  • Ahmadi , TS , Wang , ZL , Green , TC , Henglein , A and El-Sayed , MA . 1996 . Shape-controlled synthesis of colloidal platinum nanoparticles . Science , 272 : 1924
  • Albe , V , Jouanin , C and Bertho , D . 1998 . Influence of II–VI nanocrystal shapes on optical properties . J. Cryst. Growth , 185 : 388
  • Morales , AM and Lieber , CM . 1998 . A laser ablation method for the synthesis of crystalline semiconductor nanowires . Science , 279 : 208
  • Martin , CR . 1994 . Nanomaterials -- a membrane-based synthetic approach . Science , 266 : 1961
  • Wang , YD , Ma , CL , Sun , XD and Li , HD . 2002 . Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method . Inorg. Chem. Commun. , 5 : 751
  • Shi , WS , Zheng , YF , Wang , N , Lee , CS and Lee , ST . 2001 . A general synthetic route to III--V compound semiconductor nanowires . Adv. Mater. , 13 : 591
  • Pan , ZW , Dai , ZR and Wang , ZL . 2001 . Nanobelts of semiconducting oxides . Science , 291 : 1947
  • Liu , SW , Yue , J and Gedanken , A . 2001 . Synthesis of long silver nanowires from AgBr nanocrystals . Adv. Mater. , 13 : 656
  • Li , YD , Liao , HW , Ding , Y , Qian , YT , Li , Y and Zhou , GE . 1998 . Nonaqueous synthesis of CdS nanorod semiconductor . Chem. Mater. , 10 : 2301
  • Wang , WZ , Geng , Y , Yan , P , Liu , FY , Xie , Y and Qian , YT . 1999 . Synthesis and characterization of MSe (M = Zn, Cd) nanorods by a new solvothermal method . Inorg. Chem. Commun. , 2 : 83
  • Yan , P , Xie , Y , Qian , YT and Liu , XM . 1999 . A cluster growth route to quantum-confined CdS nanowires . Chem. Commun. , : 1293
  • Deng , ZX , Wang , C , Sun , XM and Li , YD . 2002 . Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route . Inorg. Chem. , 41 : 869
  • Manna , L , Scher , EC and Alivisators , AP . 2000 . Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals . J. Am. Chem. Soc. , 122 : 12700
  • Qing , Y , Tang , KB , Wang , Ch.R. , Qian , YT and Zhang , Sh.Y. 2002 . PVA-assisted synthesis and characterization of CdSe and CdTe nanowires . J. Phys. Chem. B , 106 : 9227
  • Chen , CC , Chao , CY and Lang , ZH . 2000 . Simple solution-phase synthesis of soluble CdS and CdSe nanorods . Chem. Mater. , 12 : 1516
  • Hardee , KL and Bard , AJ . 1977 . Semiconductor electrodes X photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions . J. Electrochem. Soc. , 124 : 215
  • Hara , M , Kondo , T , Komoda , M , Ikeda , S , Shinohara , K , Tanaka , A , Kondo , JN and Domen , K . 1998 . Cu2O as a photocatalyst for overall water splitting under visible light irradiation . Chem. Commun. , : 357
  • Nakayama , S , Kimura , A , Shibata , M , Kuwabata , S and Osakai , T . 2001 . Voltammetric characterization of oxide films formed on copper in air . J. Electrochem. Soc. , 148 : B467
  • Nagase , K , Zhang , Y , Kodama , Y and Kakuta , J . 1999 . Dynamic study of the oxidation state of copper in the course of carbon monoxide oxidation over powdered CuO and Cu2O . J. Catal. , 187 : 123
  • Xu , JF , Ji , W , Shen , ZX , Tang , SH , Ye , XR , Jia , DZ and Xin , XQ . 1999 . Preparation and characterization of CuO nanocrystals . J. Solid State Chem. , 147 : 516
  • Xu , JF , Ji , W , Shen , ZX , Li , WS , Tang , SH , Ye , XR , Jia , DZ and Xin , XQ . 1999 . Raman spectra of CuO nanocrystals . J. Raman Spectrosc. , 30 : 413
  • Wang , W , Zhan , Y , Wang , X , Liu , Y , Zheng , C and Wang , G . 2002 . Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant . Mater. Res. Bull. , 37 : 1093
  • Sun , JH , Gong , YJ , Fan , WH , Wu , D and Sun , YH . 2000 . Chem. J. Chin. Univ. , 21 : 95
  • Wang , W , Liu , Z , Liu , Y , Xu , C , Zheng , C and Wang , G . 2003 . A simple wet-chemical synthesis and characterization of CuO nanorods . Appl. Phys. A , 76 : 417
  • 1991 . Joint Committee on Powder Diffraction Standards: diffraction Data File Pennsylvania No. 5–661, JCPDS International Center for Diffraction Data
  • Gao , XP , Bao , JL , Pan , GL , Zhu , HY , Huang , PX , Wu , F and Song , DY . 2004 . Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery . J. Phys. Chem. B. , 108 : 5547
  • Punnoose , A , Magnone , H , Seehra , MS and Bonevich , J . 2001 . Bulk to nanoscale magnetism and exchange bias in CuO nanoparticles . Phy. Rev. B , 64 : 174420
  • Ibrahim , MM , Zhao , J and Seehra , MS . 1992 . Determination of the particle size distribution in Fe2O3-based catalyst using magnetometry and X-ray diffraction . J. Mater. Res. , 7 : 1856
  • Viano , A , Mishra , SR , Lloyd , R , Losby , J and Gheyi , T . 2003 . Thermal effects on ESR signal evolution in nano and bulk CuO powder . J. Non-crystal. Solids , 325 : 16
  • Zhu , CL , Chen , CN , Hao , LY , Hu , Y and Chen , ZY . 2004 . Template-free synthesis of Cu2Cl(OH)3 nanoribbons and use as sacrificial template for CuO nanoribbon . J. Crys. Growth , 263 : 473
  • Zhu , CL , Chen , CN , Hao , LY , Hu , Y and Chen , ZY . 2004 . In-situ preparation of 1D CuO nanostructures using Cu2(OH)2CO3 nanoribbons as precursor for sacrifice-template via heat-treatment . Solid State Commun. , 130 : 681
  • Song , X , Sun , S , Zhang , W , Yu , H and Fan , W . 2004 . Synthesis of Cu(OH)2 nanowires at aqueous-organic interfaces . J. Phys. Chem. B , 108 : 5200
  • Lu , C , Qi , L , Yang , J , Zhang , D , Wu , N and Ma , J . 2004 . Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures . J. Phys. Chem. B , 108 : 17825
  • Chang , Y and Zeng , HC . 2004 . Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons . Crys. Growth Des. , 4 : 397
  • Liu , B and Zeng , HC . 2004 . Formation of “Dandelions” . J. Am. Chem. Soc. , 126 : 8124
  • Yang , R and Gao , L . 2004 . Novel way to synthesize CuO nanocrystals with various morphologies . Chem. Lett. , 33 : 1194
  • Baker , ES and Jonas , J . Transport and relaxation properties of dimethyl sulfoxide-water mixtures at high pressure . J. Phys. Chem. , 89 1730 (1985), and the references cited therein
  • Nemeth , J , Rodriguez-Gattorno , G , Diaz , D , Vazquez-Olmos , AR and Dekany , I . 2004 . Synthesis of ZnO nanoparticles on a clay mineral surface in dimethyl sulfoxide medium . Langmuir , 20 : 2855
  • Xu , CK , Liu , YK , Xu , G and Wang , G . 2002 . Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor . Mater. Res. Bull. , 37 : 2365
  • Hong , ZS , Cao , Y and Deng , JF . 2002 . A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles . Mater. Lett. , 52 : 34
  • Wang , H , Xu , JZ , Zhu , JJ and Chen , HY . 2002 . Preparation of CuO nanoparticles by microwave irradiation . J. Crys. Growth , 244 : 88
  • Iwasaki , M and Ito , S . 1997 . New route to prepare ultrafine ZnO particles and its reaction mechanism . J. Mater. Sci. Lett. , 16 : 1503
  • Borgohain , K , Singh , JB , Rama Rao , MV , Shripathi , T and Mahamumi , S . 2000 . Quantum size effects in CuO nanoparticles . Phy. Rev. B. , 61 : 11093
  • Lo , CH , Tsung , TT , Chen , LC , Su , CH and Lin , HM . 2005 . Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS) . J. Nanopar. Res. , 7 : 313
  • Jiang , X , Herricks , T and Xia , Y . 2002 . CuO nanowires can be synthesized by heating copper substrate in air . Nano Lett. , 2 : 1333
  • Adegboyega , GA . 1990 . Preparation and characterization of thermally oxidized copper substrates for photothermal and photovoltaic energy conversion . Niger, J. Renew. Energy , 1 : 21
  • Yu , T , Zhao , X , Shen , ZX , Wu , YH and Su , WH . 2004 . Investigation of individual CuO nanorods by polarized micro-Raman scattering . J. Crys. Growth , 268 : 590
  • Huang , LS , Yang , SG , Li , T , Gu , BX , Du , YW , Lu , YN and Shi , SZ . 2004 . Preparation of large-scale cupric oxide nanowires by thermal evaporation method . J. Crys. Growth , 260 : 130
  • Wen , XG , Zhang , WX and Yang , SH . 2003 . Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper substrate . Langmuir , 19 : 5898
  • Anandan , S , Wen , XG and Yang , SH . 2005 . Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells . Mater. Chem. Phys. , 93 : 35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.