206
Views
17
CrossRef citations to date
0
Altmetric
Review

Modern approaches to accelerate discovery of new antischistosomal drugs

, , , &
Pages 557-567 | Received 01 Feb 2016, Accepted 11 Apr 2016, Published online: 03 May 2016

References

  • Colley DG, Bustinduy AL, Secor WE, et al. Human schistosomiasis. Lancet. 2014;383:2253–2264. doi:10.1016/S0140-6736(13)61612-8.
  • World Health Organization. Schistosomiasis [Internet]; [cited 2016 Jan 3] Available from: http://www.who.int/mediacentre/factsheets/fs115/en/
  • Gönnert R, Andrews P. Praziquantel, a new board-spectrum antischistosomal agent. Z Parasitenkd. 1977;52:129–150. doi:10.1007/BF00389899.
  • Ismail M, Metwally A, Farghaly A, et al. Characterization of isolates of Schistosoma mansoni from Egyptian villagers that tolerate high doses of praziquantel. Am J Trop Med Hyg. 1996;55:214–218.
  • Fallon PG, Sturrock RF, Niang AC, et al. Short report: diminished susceptibility to praziquantel in a Senegal isolate of Schistosoma mansoni. Am J Trop Med Hyg. 1995;53:61–62.
  • Wang W, Wang L, Liang Y. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol Res. 2012;111:1871–1877. doi:10.1007/s00436-012-2938-2.
  • Caffrey CR, Secor WE. Schistosomiasis: from drug deployment to drug development. Curr Opin Infect Dis. 2011;24:410–417. doi:10.1097/QCO.0b013e328349156f.
  • Geary TG, Sakanari JA, Caffrey CR. Anthelmintic drug discovery: into the future. J Parasitol. 2015;101:125–133. doi:10.1645/15-767.
  • Ramirez B, Bickle Q, Yousif F, et al. Schistosomes: challenges in compound screening. Expert Opin Drug Discov. 2007;2:S53–S61. doi:10.1517/17460441.2.1.115.
  • Keiser J. In vitro and in vivo trematode models for chemotherapeutic studies. Parasitology. 2010;137:589–603. doi:10.1017/S0031182009991739.
  • Nwaka S, Hudson A. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov. 2006;5:941–955. doi:10.1038/nrd2144.
  • Berriman M, Haas BJ, LoVerde PT, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352–358. doi:10.1038/nature08160.
  • Protasio AV, Tsai IJ, Babbage A, et al. A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2012;6:e1455. doi:10.1371/journal.pntd.0001455.
  • Zhou Y, Zheng H, Chen Y, et al. The Schistosoma japonicum genome reveals features of host–parasite interplay. Nature. 2009;460:345–351. doi:10.1038/nature08140.
  • Young ND, Jex AR, Li B, et al. Whole-genome sequence of Schistosoma haematobium. Nat Genet. 2012;44:221–225. doi:10.1038/ng.1065.
  • Frearson JA, Collie IT. HTS and hit finding in academia – from chemical genomics to drug discovery. Drug Discov Today. 2009;14:1150–1158. doi:10.1016/j.drudis.2009.09.004.
  • Rees S. The promise of open innovation in drug discovery: an industry perspective. Future Med Chem. 2015;7:1835–1838. doi:10.4155/fmc.15.125.
  • Dahlin JL, Walters MA. The essential roles of chemistry in high-throughput screening triage. Future Med Chem. 2014;6:1265–1290. doi:10.4155/fmc.14.60.
  • Simeonov A, Jadhav A, Sayed AA, et al. Quantitative high-throughput screen identifies inhibitors of the Schistosoma mansoni redox cascade. PLoS Negl Trop Dis. 2008;2:e127. doi:10.1371/journal.pntd.0000127.
  • Kuhn I, Kellenberger E, Said-Hassane F, et al. Identification by high-throughput screening of inhibitors of Schistosoma mansoni NAD(+) catabolizing enzyme. Bioorg Med Chem. 2010;18:7900–7910. doi:10.1016/j.bmc.2009.12.033.
  • Kuntz AN, Davioud-Charvet E, Sayed AA, et al. Thioredoxin glutathione reductase from Schistosoma mansoni: an essential parasite enzyme and a key drug target. PLoS Med. 2007;4:e206. doi:10.1371/journal.pmed.0040206.
  • Sayed AA, Simeonov A, Thomas CJ, et al. Identification of oxadiazoles as new drug leads for the control of schistosomiasis. Nat Med. 2008;14:407–412. doi:10.1038/nm1737.
  • Paveley RA, Bickle QD. Automated imaging and other developments in whole-organism anthelmintic screening. Parasite Immunol. 2013;35:302–313. doi:10.1111/pim.2013.35.issue-9pt10.
  • Manneck T, Braissant O, Haggenmuller Y, et al. Isothermal microcalorimetry to study drugs against Schistosoma mansoni. J Clin Microbiol. 2011;49:1217–1225. doi:10.1128/JCM.02382-10.
  • Smout MJ, Kotze AC, McCarthy JS, et al. A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility. PLoS Negl Trop Dis. 2010;4:e885. doi:10.1371/journal.pntd.0000885.
  • Rinaldi G, Loukas A, Brindley PJ, et al. Viability of developmental stages of Schistosoma mansoni quantified with xCELLigence worm real-time motility assay (xWORM). Int J Parasitol Drugs Drug Resist. 2015;5:141–148. doi:10.1016/j.ijpddr.2015.07.002.
  • Asarnow DE, Singh R. Segmenting the etiological agent of schistosomiasis for high-content screening. IEEE Trans Med Imaging. 2013;32:1007–1018. doi:10.1109/TMI.2013.2247412.
  • Asarnow D, Rojo-Arreola L, Suzuki BM, et al. The QDREC web server: determining dose-response characteristics of complex macroparasites in phenotypic drug screens. Bioinformatics. 2015;31:1515–1518. doi:10.1093/bioinformatics/btu831.
  • Paveley RA, Mansour NR, Hallyburton I, et al. Whole organism high-content screening by label-free, image-based Bayesian classification for parasitic diseases. PLoS Negl Trop Dis. 2012;6:e1762. doi:10.1371/journal.pntd.0001762.
  • Marcellino C, Gut J, Lim KC, et al. WormAssay: a novel computer application for whole-plate motion-based screening of macroscopic parasites. PLoS Negl Trop Dis. 2012;6:e1494. doi:10.1371/journal.pntd.0001494.
  • Panic G, Flores D, Ingram-Sieber K, et al. Fluorescence/luminescence-based markers for the assessment of Schistosoma mansoni schistosomula drug assays. Parasit Vectors. 2015;8:624. doi:10.1186/s13071-015-1233-3.
  • Mansour NR, Bickle QD. Comparison of microscopy and Alamar blue reduction in a larval based assay for schistosome drug screening. PLoS Negl Trop Dis. 2010;4:e795. doi:10.1371/journal.pntd.0000795.
  • Marxer M, Ingram K, Keiser J. Development of an in vitro drug screening assay using Schistosoma haematobium schistosomula. Parasit Vectors. 2012;5:165. doi:10.1186/1756-3305-5-123.
  • Peak E, Chalmers IW, Hoffmann KF. Development and validation of a quantitative, high-throughput, fluorescent-based bioassay to detect schistosoma viability. PLoS Negl Trop Dis. 2010;4:e759. doi:10.1371/journal.pntd.0000759.
  • Howe S, Zöphel D, Subbaraman H, et al. Lactate as a novel quantitative measure of viability in Schistosoma mansoni drug sensitivity assays. Antimicrob Agents Chemother. 2015;59:1193–1199. doi:10.1128/AAC.03809-14.
  • Lalli C, Guidi A, Gennari N, et al. Development and validation of a luminescence-based, medium-throughput assay for drug screening in Schistosoma mansoni. PLoS Negl Trop Dis. 2015;9:e0003484. doi:10.1371/journal.pntd.0003484.
  • Nantasenamat C, Prachayasittikul V. Maximizing computational tools for successful drug discovery. Expert Opin Drug Discov. 2015;10:321–329. doi:10.1517/17460441.2015.1016497.
  • Wang Y, Xiao J, Suzek TO, et al. PubChem’s BioAssay database. Nucleic Acids Res. 2012;40:D400–D412. doi:10.1093/nar/gkr1132.
  • Liu T, Lin Y, Wen X, et al. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007;35:D198–D201. doi:10.1093/nar/gkl999.
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40:D1100–D1107. doi:10.1093/nar/gkr777.
  • Goldmann D, Montanari F, Richter L, et al. Exploiting open data: a new era in pharmacoinformatics. Future Med Chem. 2014;6:503–514. doi:10.4155/fmc.14.13.
  • Karthikeyan M, Vyas R. Role of open source tools and resources in virtual screening for drug discovery. Comb Chem High Throughput Screen. 2015;18:528–543. doi:10.2174/1386207318666150703111911.
  • Tanrikulu Y, Krüger B, Proschak E. The holistic integration of virtual screening in drug discovery. Drug Discov Today. 2013;18:358–364. doi:10.1016/j.drudis.2013.01.007.
  • Kar S, Roy K. How far can virtual screening take us in drug discovery? Expert Opin Drug Discov. 2013;8:245–261. doi:10.1517/17460441.2013.761204.
  • Zhu T, Cao S, Su P-C, et al. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem. 2013;56:6560–6572. doi:10.1021/jm301916b.
  • Kannan S, Melesina J, Hauser A-T, et al. Discovery of inhibitors of Schistosoma mansoni HDAC8 by combining homology modeling, virtual screening, and in vitro validation. J Chem Inf Model. 2014;54:3005–3019. doi:10.1021/ci5004653.
  • Liu J, Dyer D, Wang J, et al. 3-oxoacyl-ACP reductase from Schistosoma japonicum: integrated in silico-in vitro strategy for discovering antischistosomal lead compounds. PLoS One. 2013;8:e64984. doi:10.1371/journal.pone.0064984.
  • Liu J, Dyer DH, Cheng J, et al. Aldose reductase from Schistosoma japonicum: crystallization and structure-based inhibitor screening for discovering antischistosomal lead compounds. Parasit Vectors. 2013;6:1–10. doi:10.1186/1756-3305-6-162.
  • Postigo MP, Guido RVC, Oliva G, et al. Discovery of new inhibitors of Schistosoma mansoni PNP by pharmacophore-based virtual screening. J Chem Inf Model. 2010;50:1693–1705. doi:10.1021/ci100128k.
  • Jacques SA, Kuhn I, Koniev O, et al. Discovery of potent inhibitors of Schistosoma mansoni NAD + catabolizing enzyme. J Med Chem. 2015;58:3582–3592. doi:10.1021/acs.jmedchem.5b00203.
  • Ferreira LG, Oliva G, Andricopulo AD. Target-based molecular modeling strategies for schistosomiasis drug discovery. Future Med Chem. 2015;7:753–764. doi:10.4155/fmc.15.21.
  • Lionta E, Spyrou G, Vassilatis DK, et al. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem. 2014;14:1923–1938. doi:10.2174/1568026614666140929124445.
  • Rose PW, Prlić A, Bi C, et al. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res. 2015;43:D345–D356. doi:10.1093/nar/gku1214.
  • Ferreira L, dos Santos R, Oliva G, et al. Molecular docking and structure-based drug design strategies. Molecules. 2015;20:13384–13421. doi:10.3390/molecules200713384.
  • Cerqueira NMFSA, Gesto D, Oliveira EF, et al. Receptor-based virtual screening protocol for drug discovery. Arch Biochem Biophys. 2015;582:56–67. doi:10.1016/j.abb.2015.05.011.
  • Pirhadi S, Shiri F, Ghasemi JB. Methods and applications of structure based pharmacophores in drug discovery. Curr Top Med Chem. 2013;13:1036–1047. doi:10.2174/1568026611313090006.
  • Caporuscio F, Tafi A. Pharmacophore modelling: a forty year old approach and its modern synergies. Curr Med Chem. 2011;18:2543–2553. doi:10.2174/092986711795933669.
  • Njoroge M, Njuguna NM, Mutai P, et al. Recent approaches to chemical discovery and development against malaria and the neglected tropical diseases human african trypanosomiasis and schistosomiasis. Chem Rev. 2014;114:11138–11163. doi:10.1021/cr500098f.
  • Neves BJ, Braga RC, Bezerra JCB, et al. In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni. PLoS Negl Trop Dis. 2015;9:e3435. doi:10.1371/journal.pntd.0003435.
  • Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual screening. Drug Discov Today. 2011;16:372–376. doi:10.1016/j.drudis.2011.02.011.
  • Muegge I, Mukherjee P. An overview of molecular fingerprint similarity search in virtual screening. Expert Opin Drug Discov. 2015;11:1–12 doi:10.1517/17460441.2016.1117070.
  • Cereto-Massagué A, Ojeda MJ, Valls C, et al. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58–63. doi:10.1016/j.ymeth.2014.08.005.
  • Vuorinen A, Schuster D. Methods for generating and applying pharmacophore models as virtual screening filters and for bioactivity profiling. Methods. 2015;71:113–134. doi:10.1016/j.ymeth.2014.10.013.
  • Koes DR, Camacho CJ. Shape-based virtual screening with volumetric aligned molecular shapes. J Comput Chem. 2014;35:1824–1834. doi:10.1002/jcc.v35.25.
  • Kortagere S, Krasowski MD, Ekins S. The importance of discerning shape in molecular pharmacology. Trends Pharmacol Sci. 2009;30:138–147. doi:10.1016/j.tips.2008.12.001.
  • Ghemtio L, Perez-Nueno VI, Leroux V, et al. Recent trends and applications in 3D virtual screening. Comb Chem High Throughput Screen. 2012;15:749–769. doi:10.2174/138620712803519707.
  • Cherkasov A, Muratov EN, Fourches D, et al. QSAR modeling: where have you been? Where are you going to? J Med Chem. 2014;57:4977–5010. doi:10.1021/jm401509e.
  • Breiman L. Random forests. Mach Learn. 2001;45:5–32. doi:10.1023/A:1010933404324.
  • Vapnik V. The nature of statistical learning theory. 2nd ed. New York (NY): Springer; 2000. doi:10.1007/978-1-4757-3264-1.
  • Muratov EN, Artemenko AG, Varlamova EV, et al. Per aspera ad astra: application of Simplex QSAR approach in antiviral research. Future Med Chem. 2010;2:1205–1226. doi:10.4155/fmc.10.194.
  • Dubois F, Caby S, Oger F, et al. Histone deacetylase inhibitors induce apoptosis, histone hyperacetylation and up-regulation of gene transcription in Schistosoma mansoni. Mol Biochem Parasitol. 2009;168:7–15. doi:10.1016/j.molbiopara.2009.06.001.
  • Marek M, Kannan S, Hauser A-T, et al. Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog. 2013;9:e1003645. doi:10.1371/journal.ppat.1003645.
  • Scior T, Bender A, Tresadern G, et al. Recognizing pitfalls in virtual screening: a critical review. J Chem Inf Model. 2012;52:867–881. doi:10.1021/ci200321u.
  • Braga RC, Alves VM, Silva AC, et al. Virtual screening strategies in medicinal chemistry: the state of the art and current challenges. Curr Top Med Chem. 2014;14:1899–1912. doi:10.2174/1568026614666140929120749.
  • Williams AJ, Ekins S. A quality alert and call for improved curation of public chemistry databases. Drug Discov Today. 2011;16:747–750. doi:10.1016/j.drudis.2011.07.007.
  • Fourches D, Muratov E, Tropsha A. Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J Chem Inf Model. 2010;50:1189–1204. doi:10.1021/ci100176x.
  • Fourches D, Muratov E, Tropsha A. Curation of chemogenomics data. Nat Chem Biol. 2015;11:535. doi:10.1038/nchembio.1881.
  • Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010;53:2719–2740. doi:10.1021/jm901137j.
  • Chang C-Y, Hsu M-T, Esposito EX, et al. Oversampling to overcome overfitting: exploring the relationship between data set composition, molecular descriptors, and predictive modeling methods. J Chem Inf Model. 2013;53:958–971. doi:10.1021/ci4000536.
  • Zakharov AV, Peach ML, Sitzmann M, et al. QSAR modeling of imbalanced high-throughput screening data in PubChem. J Chem Inf Model. 2014;54:705–712. doi:10.1021/ci400737s.
  • Schierz AC. Virtual screening of bioassay data. J Cheminform. 2009;1:21. doi:10.1186/1758-2946-1-21.
  • Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem. 2006;49:6789–6801. doi:10.1021/jm0600592.
  • Kalliokoski T, Salo HS, Lahtela-Kakkonen M, et al. The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J Chem Inf Model. 2009;49:2742–2748. doi:10.1021/ci900364w.
  • Lin J-H. Accommodating protein flexibility for structure-based drug design. Curr Top Med Chem. 2011;11:171–178. doi:10.2174/156802611794863580.
  • Salsbury FR. Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol. 2010;10:738–744. doi:10.1016/j.coph.2010.09.016.
  • Borhani DW, Shaw DE. The future of molecular dynamics simulations in drug discovery. J Comput Aided Mol Des. 2012;26:15–26. doi:10.1007/s10822-011-9517-y.
  • Hou X, Li K, Yu X, et al. Protein flexibility in docking-based virtual screening: discovery of novel lymphoid-specific tyrosine phosphatase inhibitors using multiple crystal structures. J Chem Inf Model. 2015;55:1973–1983. doi:10.1021/acs.jcim.5b00344.
  • Liao C, Sitzmann M, Pugliese A, et al. Software and resources for computational medicinal chemistry. Future Med Chem. 2011;3:1057–1085. doi:10.4155/fmc.11.63.
  • Xu M, Lill MA. Induced fit docking, and the use of QM/MM methods in docking. Drug Discov Today Technol. 2013;10:e411–e418. doi:10.1016/j.ddtec.2013.02.003.
  • Braga RC, Andrade CH. Assessing the performance of 3D pharmacophore models in virtual screening: how good are they? Curr Top Med Chem. 2013;13:1127–1138. doi:10.2174/1568026611313090010.
  • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform. 2010;29:476–488. doi:10.1002/minf.201000061.
  • van de Waterbeemd H, Gifford E. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov. 2003;2:192–204. doi:10.1038/nrd1032.
  • Braga RC, Alves VM, Silva MFB, et al. Pred-hERG: a novel web-accessible computational tool for predicting cardiac toxicity. Mol Inform. 2015;34:698–701. doi:10.1002/minf.201500040.
  • Alves VM, Muratov E, Fourches D, et al. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds. Toxicol Appl Pharmacol. 2015;284:262–272. doi:10.1016/j.taap.2014.12.014.
  • Kubinyi H. The changing landscape in drug discovery. In: Stroud RM, editor. Computational approaches to structure baseddrug design. London: Royal Society of Chemistry; 2007. p. 24–45.
  • Drwal MN, Griffith R. Combination of ligand- and structure-based methods in virtual screening. Drug Discov Today Technol. 2013;10:e395–e401. doi:10.1016/j.ddtec.2013.02.002.
  • Lavecchia A, Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr Med Chem. 2013;20:2839–2860. doi:10.2174/09298673113209990001.
  • Hotez PJ, Bottazzi ME, Strych U. New vaccines for the world’s poorest people. Annu Rev Med. 2016;67:405–417. doi:10.1146/annurev-med-051214-024241.
  • Muratov EN, Varlamova EV, Artemenko AG, et al. Existing and developing approaches for QSAR analysis of mixtures. Mol Inform. 2012;31:202–221. doi:10.1002/minf.201100129.
  • Uniting to Combat NTDs. The London Declaration [Internet]; [cited 2016 Mar 16]. Available from: http://unitingtocombatntds.org/resource/london-declaration

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.